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Abstract 

Stainless steel is a metal alloy that is being used more often in the construction industry 

thanks to its corrosion and heat resistance which allows it to withstand highly aggressive 

and corrosive environments. However, the chromium content that is responsible for the 

corrosion resistance, also modifies its mechanical behaviour resulting in a non-linear 

material.  The lack of information, its high unitary price and its non-linearity, reduce the 

confidence in using stainless steel as a structural material and encourage conservative 

designs.  

The main objective of this work consists of understanding the cyclic behaviour and low-

cycle fatigue of grade 1.4301 austenitic stainless steel in order to introduce it to 

earthquake-resistant structures. Experimental tests and numerical models were 

performed. 

The tests performed were low-cycle fatigue tests at strain amplitudes ranging from ±0.5% 

to ±5%, and the numerical models were executed in the general-purpose Software Abaqus 

using combined isotropic/kinematic hardening model based on the Chaboche model.  

Analytical parameters that establish the Chaboche model were obtained from the tests data 

and proposed for further research. 
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1. INTRODUCTION AND OBJECTIVES  

1.1. Introduction 

Stainless steel is a kind of a corrosion and heat-resistant steel that comes from an alloy 

of iron with a minimum of 10.5% of chromium [1]. Although this alloy was first 

implemented in applications like culinary equipment in the early 1910s, it wasn’t long 

before it was used as a structural material. This alloy is attractive in the construction 

industry due to its low maintenance requirements, aesthetics, recyclability, favourable 

strength, high ductility and the mentioned corrosion and heat resistance [1]; as a result, 

its use is continuously increasing, despite its high cost.  

There are five different families of stainless steel, namely austenitic, duplex, ferritic, 

martensitic and precipitation hardening. Austenitic and duplex stainless steels are the 

most commonly used for structural application; these two families exhibit high corrosion 

resistance, high strength and ductility which makes them suitable for seismic 

applications. Hence, it is important to study their behaviour thoroughly, in order to 

implement it efficiently and reduce costs. 

The corrosion resistance property of stainless steel is attributed to the percentage of 

chromium, but this component also modifies its structural behaviour resulting in a non-

linear material. As a result of its complex behaviour and its relatively new appearance in 

construction, stainless steel as a structural material, has several uncertainties. A 

particular uncertain behaviour, and main subject of this study, is the inelastic response 

of austenitic stainless steel when subjected to periodic load i.e. the cyclic plasticity of 

austenitic stainless steel. This problem limits the potential of exploiting the high ductility 

of stainless steel in earthquake-resistant structures.  

When a structure suffers periodic loads such as the ones resulting from earthquakes, its 

structural members may experience very large displacement cycles and their response 

is controlled by their geometry and by the hysteretic behaviour of the material [2] [3]. 

Also, these displacements create inelastic deformations that lead to non-linear and 

cyclic plasticity models which are complex to recreate.  Therefore, in order to introduce 

austenitic stainless steel in earthquake-resistant structures, it is necessary to 

understand its cyclic behaviour and determine the structural performance of structural 

members made of this alloy.  

In this research project, Low-cycle fatigue tests will be carried out to study the properties 

of 1.4301 austenitic stainless steel and subsequently, a parameter correlation of the 

constitutive model for cyclic plasticity of stainless steel and numerical models will be 

established. For this reason, the finite element software Abaqus is employed. Abaqus 

supports the input of several parameters that define the plastic behaviour of the 

material including cyclic behaviour; these parameters, along with the experimental tests, 

will be compared and studied. 
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1.2. Objectives 

The main objectives of this work consist of understanding the behaviour of stainless 

steel subjected to large displacement cycles. These displacement cycles may be present 

in a structure during an earthquake, therefore this study helps to the introduction of 

stainless steel structures under seismic events. The objectives are subdivided into 

general and specific objectives. 

1.3. General objective  

This study has been focused towards the general objective of understanding the cyclic 

behaviour and low-cycle fatigue of austenitic stainless steel by performing experimental 

tests that describe the cyclic plasticity of this material and identifying an analytical 

model that adequately simulates the strain hardening and the Bauschinger effect in this 

highly nonlinear material.  

1.4. Specific objectives  

- Obtain the stainless steel mechanical properties by performing a monotonic 

tensile test of a round coupon. 

- Define the optimal cyclic tests typology for this study.  

- Perform Low-cycle fatigue tests. 

- Understand the procedure for obtaining data from tests used in the analytical 

model and in numerical simulations. 

- Perform numerical finite element models using ABAQUS software. 

- Establish a comparison between the experimental data and the numerical results. 

- Calibrate parameters for the most appropriate analytical model previously 

identified.  

1.5. Content of work 

In this first chapter, a brief introduction about the research project along with the 

objectives is presented. 

In chapter 2, a brief review of the literature is presented. Starting with a description of 

stainless steel as a material emphasizing on its mechanical response. Material models 

for monotonic behaviour and for cyclic behaviour are exhibited. And finally, a 

compilation of previous studies about cyclic behaviour of stainless steel is provided.  

Chapter 3 summarizes information about the finite element method (FEM) and a 

description about the analyses conducted in this project using the computer software 

ABAQUS-Simulia. 

Chapter 4 contains all the information regarding the experimental tests. First a coupon 

design is made to prevent buckling when subjected to compression, then the equipment 

and test set up are described along with the loading protocols, formerly a description of 

each test is presented and finally, the results are shown.  
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In chapter 5  the experimental results are analysed and formerly, relevant information 

and properties are extracted. 

In chapter 6 the numerical models using test data are made and compared with the 

experimental tests. First, the material input is described and then, a comparison 

between FEM and experimental test is performed.  

Conclusions, recommendations and possible areas for future research are presented in 

chapter 7.  
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2. LITERATURE REVIEW  

2.1. Stainless steel 

Stainless steel is an alloy resulting from the mixture of mostly iron and a minimum of 

10.5% chromium. When exposed to oxygen, the chromium forms a self-repairing 

chromium-rich thin oxide surface, protecting the steel from additional interaction with 

an oxidising agent and hence, attributing its corrosion resistance property. This layer is 

known as “passive film”, is stable and non-porous, with a thickness of approximately 

5𝑥10−6 mm [1]. As a result, stainless steel is a highly attractive structural material 

mainly because it overcomes the carbon steel foremost weakness i.e. corrosion.  

There are other major alloying elements like Nickel, Copper, Molybdenum and Titanium; 

that modifies some mechanical and physical properties generating a family of stainless 

steels. These modifications can produce an alloy more weldable, formable and tough, 

can improve resistance to chlorides, improve strength, corrosion resistance, high-

temperature performance as well as other properties. This family of stainless steels is 

categorized into five groups: austenitic, duplex, ferritic, martensitic and precipitation 

hardening. 

Each group of stainless steel adjusts to different applications and requirements. In most 

cases, corrosion resistance is a key factor to determine a stainless steel group, followed 

by service life and the capacity to tolerate crevice, pitting, abrasion and intergranular 

corrosion. 

2.1.1. Types of stainless steels 

Stainless steels are classified into five basic groups according to their metallurgical 

structure: austenitic, ferritic, martensitic, duplex and precipitation-hardening [1]. In 

figure 1 it is possible to identify the content of chromium and nickel for each type of 

stainless steel, in the case of austenitic stainless steel, it is clearly the type with the 

highest nickel content, this being the main reason for its high price.  

 
Fig. 1.Classification of stainless steels according to nickel and chromium content [4]. 
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Each type has different properties and their corrosion resistance varies from one to 

another. Some of them are ideal for structures in a specific environment and some are 

not appropriate for structural applications, especially when welding is expected. Each 

type is separated into branches and categorised by grades.  

Austenitic stainless steels  

These stainless steels, as well as duplex stainless steels, are the most commonly used. 

They have a chromium content of 17 to 18%, a nickel content between 8 and 11% and 

an austenitic microstructure at room temperature (which means that the crystal 

structure is a face-centred cubic system rather than a body-centred cubic system 

present in the ferritic crystal structure of carbon steels). They offer high ductility in a 

wide temperature range, non-magnetic properties, impact resistance, heat resistance, 

favourable forming properties and weldability in addition to their good corrosion 

resistance. In general, austenitic stainless steels have greater corrosion resistance than 

ferritic and martensitic stainless steels; and similar to duplex stainless steel. Their 

strength is fairly good and it can only be hardened by cold-working. [1] 

The most common standard austenitic grades are 1.4301 and 1.4401 (also known as 304 

and 316 in ASTM standards), these grades also come in low carbon versions: 1.4307 and 

1.4404 (304L and 316L respectively). Other relevant grades are the austenitic stainless 

steels: 1.4541 and 1.4571. They contain around 17 to 19.5% chromium, 8 to 13.5% nickel 

[5]. Grade 1.4301 is suitable for rural, urban and light industrial sites, grade 1.4401 for 

marine and industrial sites, low carbon grades and the stabilised grades are used when 

corrosion performance is important in welded members. [1]  

Ferritic stainless steels 

These materials have a ferritic microstructure (body-centred cubic crystal system) and 

relatively low cost due to low nickel content. Ductility, strength, formability and 

weldability are inferior to those of austenitic steels. They are magnetic, prone to become 

brittle at low temperatures, their strength can only be increased by cold working, they 

have very good cold forming properties and, unlike austenitic stainless steels, they are 

insensitive to stress corrosion cracking. Ferritic stainless steels offer an adequate 

performance/cost ratio for several applications and therefore their use is increasing. [1] 

Grades 1.4003, 1.4016 and 1.4512 are the only ones classified as structural stainless 

steels in EN 1993-1-4 [6]. Both grades 1.4003 and 1.4512 contain around 10.5 to 12.5% 

chromium and less than 0.03% carbon, but grade 1.4003 contains 0.3 to 1% Nickel whilst 

grade 1.4512 lacks Nickel. Grade 1.4016 has 16 to 18% chromium less than 0.08% carbon 

and no Nickel [5]. The low content of nickel makes ferritic stainless steels available at a 

lower and more stable market price and, adding the fact that they have a higher 

resistance than austenitic steels, it can be said that ferritic stainless steels are an 

attractive alternative for many applications. [1] 
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Martensitic stainless steels 

Martensitic steels are formed from austenite during heat treatment or by cold working. 

They are magnetic and show high strength. Traditional martensitic steels made with 0.08% 

to 1% Carbon are air hardened, but may be strengthened by a quenching heat treatment; 

their ductility is good, but have limitations when welding. [1] 

These materials are not normally used due to their difficulty to weld, they offer high 

strength but in other properties, they are inferior to other stainless steels. [1] 

Duplex stainless steels 

Austenitic-ferritic stainless steel often known as Duplex, have a well-balanced mixed 

microstructure and a combination of austenitic and ferritic stainless steels properties. 

They typically have a chromium content between 20 to 26%, a nickel content from 1 to 

8%, 0.05 to 5% of molybdenum and between 0.05 and 0.3% of nitrogen.  Compared to 

austenitic stainless steels, duplex stainless steels have higher strength properties and 

similar weldability, need higher power for cold deformation and show higher resistance 

to stress corrosion cracking. They may be hardened by cold working. [1] 

Duplex stainless steels are one of the most commonly used due to their combination of 

the best of the properties of austenitic and ferritic groups. In the EN 1993-1-4 [6], there 

are only two grades listed: 1.4462 and 1.4362. 

Precipitation-hardening stainless steels 

Precipitation-hardening stainless steels can acquire three different microstructure 

groups, namely martensitic, semi-austenitic and austenitic. They can be strengthened 

by a heat treatment and their corrosion resistance is similar to that of austenitic stainless 

steels, with around 18% of chromium and 8% nickel. They are commonly used in 

aerospace industry. [1] 

2.1.2. Life-cycle cost and environmental impact 

Selecting a corrosion-resistant material in the construction industry is very determinant 

in a matter of life cycle cost, mainly because future maintenance could be avoided and 

costs associated with element replacement and downtime can also be reduced. 

Stainless steels represent a high initial cost but may result in a lower life-cycle cost. [1] 

Structural stainless steel, in comparison with carbon steel, has a considerably higher cost, 

although there can be initial cost savings associated with corrosion-resistant and fire-

resistant coatings, and with the reduction of material weight if using high strength 

stainless steel. With the lack of coatings and the corrosion resistance, stainless steel 

highly reduces the cost of maintenance and the inspection frequency.  

Stainless steel recycling ratio is around 80% [7], and it has a high value at the end of the 

structure life (scrap value). This means that most of the structural material can be 
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recycled which results in a low environmental impact compared to other structural 

materials. Nevertheless, scrap availability is limited due to the material high service life 

and relatively recent appearance in the construction industry [1].  

2.1.3. Examples of structural applications 

Stainless steels have several applications in the construction industry, but most of them 

involve facades, roofs, decorations or plumbing. In this section, some of the stainless 

steel applications that involve structural members will be described.  

It is appropriate to start with the first stainless steel road bridge in Europe [8]. The Cala 

Galdana Bridge (see fig. 2) is a 55m span bridge built in Menorca in 2005 with the 

purpose of replacing the existing reinforced concrete bridge that was significantly 

deteriorated by the marine atmosphere. Different grades of carbon steel and stainless 

steel were considered and Duplex stainless steel was eventually selected for the 

structure. 

 
Fig. 2. Cala Galdana Bridge, Final phase (left), construction phase (right). [8] 

Besides the Cala Galdana Bridge, there are more stainless steel bridges in Spain, like Sant 

Fruitos Pedestrian Bridge (Catalonia) and Padre Arrupe Bridge (Bilbao). 

Another structural application of stainless steel is the Aeration building in the Edmonton 

Composting Facility (Canada). This building is the largest stainless steel building in North 

America (23000m2) and it is made of austenitic stainless steel grade 1.4301. [9] 

The Station Sint Pieters in Ghent (Belgium), exhibit a glass roof held by a stainless steel 

structure at its gate (see fig. 3). 

 
Fig. 3.Sint Pieters Station transparent roof [7]. 
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There are also important buildings that have stainless steels as part of the structure: La 

Grande Arche and La Lentille de Saint-Lazare, Paris (France) (see fig.4), Torno 

Internazionale S.P.A. Headquarters, Milan (Italia), among others.  

 
Fig. 4. La Lentille de Saint-Lazare. [7] 

2.1.4. Material response 

Unlike carbon steel, stainless steels have a rounded stress-strain curve with no plateau 

and with no well-defined yield point [1]. In fig. 5 and fig. 6, a comparison of stress-strain 

characteristics between various stainless steels and carbon steel is shown. Another 

significant difference between these materials is that stainless steel exhibits a 

considerable strain hardening and high ductility, this means that it is able to absorb 

impact without fracturing and reach strains of 40-60% at fracture [10]. Also, it presents 

an anisotropic behaviour, therefore their mechanical response varies depending on the 

rolling direction. 

A “yield” point in non-linear materials such as stainless steel is generally determined as 

a proof strength for a particular offset permanent strain; in the case of stainless steel, 

the yield point is conventionally the proof stress for a 0.2% offset strain [1]. 

It is worth pointing out that, compared to carbon steels, the metallurgy of stainless 

steels is more complex and the manufacturing process has a higher impact on their final 

properties [1]. Therefore, there are factors that affect the stress-strain behaviour: Cold 

working which enhances the strength levels of stainless steel and Strain-rate sensitivity 

which means that a greater strength can be realised at fast strain rates. 
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Fig. 5. Stress-strain curves for stainless steel and carbon steel from 0 to 0,75 % strain [1]. 

 
Fig. 6.Full range stress-strain curves for stainless steel and carbon steel [1]. 
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There have been several researchers that have made experimental studies and 

numerical analyses in order to develop models to simulate the non-linear behaviour of 

stainless steel. In the following section, a brief description of these models and analytical 

expression is presented.  

2.1.5. Material models 

Monotonic response 

As a difference from carbon steels, stainless steel alloys presents a non-linear stress-

strain behaviour, this requires more complex material model than the bilinear model 

that rules carbon steels. In the last decades, several material models have been 

developed starting with the general Ramberg-Osgood proposal [11]. These models are 

built from parameters obtained from experimental tests and their objective is to provide 

a safe and accurate representation of the material behaviour in order to better 

comprehend its non-linear nature. 

The Ramberg-Osgood expression was modified by Hill [12] as given in Eq. (1), where E is 

Young’s modulus, σ0.2 is the 0.2% proof stress and n is a strain hardening exponent that 

characterizes the roundedness of the stress-strain curve [10]. 

The Ramberg-Osgood formulation is able to accurately represent the stress-strain curve 

of the material until the 0.2% proof stress, however it has been shown to be unable to 

accurately represent the whole curve with a single value on n. Due to this, two-stage 

Ramberg-Osgood models have been developed to provide a continuous representation 

of the complete stress-strain curve of stainless steel. Mirambell and Real [13] proposed 

a two-stage model defining a second curve for stresses above the 0.2% proof stress, this 

curve is given by Eq. (2) where E0,2 is the tangent modulus at 0.2% proof stress, σu and 

εu are the ultimate strength and strain, ε0,2 is the total strain at 0.2% proof stress, and m 

is an additional parameter that characterizes the roundedness of the second stage [10].  

휀 =
𝜎

𝐸
+ 0.002(

𝜎

𝜎0.2
)𝑛    𝑓𝑜𝑟 𝜎 ≤ 𝜎0.2 (1) 

휀 =
𝜎 − 𝜎0.2

𝐸0.2
+ (휀𝑢 − 휀0.2 −

𝜎𝑢 − 𝜎0.2

𝐸0.2
) ∗ (

𝜎 − 𝜎0.2

𝜎𝑢 − 𝜎0.2
)

𝑚

+ 휀0.2     𝑓𝑜𝑟 𝜎 ≥ 𝜎0.2 (2) 

This model was later simplified by Rasmussen [14] reducing the input parameters in the 

second stage of the model producing a new expression given in Eq. (3) and also 

developing expressions to determine the parameter m, the ultimate strain and strength 

(σu and εu). With this simplification, the only input parameters required to apply the 

model are the basic Ramberg-Osgood parameters i.e. Young’s modulus (E), 0.2% proof 

stress (σ0.2) and n. This proposal was included in EN 1993-1-4, Annex C for the modelling 

of stainless steel material behaviour. 
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휀 = 0.002 +
𝜎0.2

𝐸
+

𝜎 − 𝜎0.2

𝐸𝑦
+ 휀𝑢 ∗ (

𝜎 − 𝜎0.2

𝜎𝑢 − 𝜎0.2
)

𝑚

     𝑓𝑜𝑟 𝜎0.2 < 𝜎 ≤ 𝜎𝑢 (3) 

 

Cyclic response 

For cyclic behaviour, a material model capable of simulating cyclic material properties 

such as the Baushinger effect and expansion of the yield surface representation is 

needed. In the literature and in previous studies, it is shown that defining the 

characteristics of the material by a combined isotropic/kinematic hardening using the 

Chaboche model [15] proves adequate to fulfil these criteria.  

 
Fig. 7. Calibration of isotropic hardening component. [16] 

The model consists of a non-linear kinematic hardening component and an isotropic 

hardening component. The isotropic hardening behaviour defines the evolution of the 

yield surface size (σ0), as a function of the equivalent plastic strain (εp), given in Eq. (4) 

where σ|0 is the yield stress at zero plastic strain and (defined in this study as 0.2% proof 

stress), Q∞  is the maximum change in the size of the yield surface and b is a parameter 

that defines the rate at which the size of the yield surface changes as plastic straining 

increases.  

When the equivalent stress defining the size of the yield surface remains constant (σ0 = 

σ|0), the model reduces to a nonlinear kinematic hardening model. [16] 

𝜎0 = 𝜎|0 + 𝑄∞(1 − 𝑒−𝑏𝜀𝑝
) (4) 

The size of the yielding surface 𝜎𝑖
0 and the plastic strain 휀𝑖

𝑝 in ith cycle are defined by 

Eq.(5) and Eq.(6), respectively. Where 𝜎𝑖
𝑡  is the maximum tensile stress and 𝜎𝑖

𝑐  is the 
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maximum compressive stress in the elastic range as shown in the figure 7. ∆휀𝑝 is the 

plastic strain which is defined according to Eq. (7).  

𝜎𝑖
0 = (𝜎𝑖

𝑡 − 𝜎𝑖
𝑐)/2 (5) 

휀𝑖
𝑝 =

1

2
(4𝑖 − 3)∆휀𝑝 (6) 

∆휀𝑝 ≈ ∆휀 − 2𝜎1
𝑡/𝐸 (7) 

A series of (𝜎𝑖
0, 휀𝑖

𝑝) data values are used in the model to obtain the parameters Q∞ and 

b. The simplest way to obtain these data is from a stabilized loop from a symmetric 

strain-controlled cyclic experiment [16]. A stabilized cycle or loop means that the 

material reached steady-state condition 

It is important to mention that in order to obtain representative cyclic hardening data, 

the calibration experiment should be performed at a strain range, ∆휀, that corresponds 

to the strain range anticipated in the analysis because the material model does not 

predict different isotropic hardening behaviour at different strain ranges. [16] 

The change of backstress 𝛼 is defined according to the kinematic component of the 

model shown in Eq. (8), where 𝐶𝑘 and 𝛾𝑘 are constants that can be calibrated by test 

data from a stabilised cycle.  𝐶𝑘  is the initial kinematic hardening modulus and  𝛾𝑘 

determine the rate at which the kinematic hardening moduli decrease with increasing 

plastic deformation. The ratio  𝐶𝑘/𝛾𝑘  is the maximum variation in backstresses. A 

backstress is the stress coordinate of a point midway between the yield stress in tension 

and the yield stress compression. 

𝛼 =
𝐶𝑘

𝛾𝑘
(1 − 𝑒−𝛾𝜀𝑝

) + 𝛼1𝑒−𝛾𝜀𝑝
 (8) 

 
Fig. 8. Calibration of kinematic hardening component. [16] 
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Each data pair (𝜎𝑖
0, 휀𝑖

𝑝
) is obtained from test data. The plastic strain 휀𝑖

𝑝
 is defined as Eq. 

(9), where 휀𝑃
0 is the strain hen the curves intercept with the strain axis, 휀1

𝑝 = 0. 𝛼𝑖 can 

be obtained as Eq. (10), where  𝜎𝑠   is the average of the first and last data points, 

𝜎1 𝑎𝑛𝑑 𝜎𝑛 respectively, in a stabilised cycle, which are shown in fig 8. 

휀𝑖
𝑝 = 휀𝑖 −

𝜎𝑖

𝐸
− 휀𝑝

0 (9) 

𝛼𝑖 = 𝜎𝑖 − 𝜎𝑠 (10) 

A series of (휀𝑖
𝑝, 𝛼𝑖) values are used for data fitting and parameters 𝐶𝑘 and 𝛾𝑘 in Eq. (8) 

can be obtained. 

2.1.6. Stainless steel standards and guidelines 

In this research project, the standards used as a reference are divided into two sections: 

the standards for stainless steel design and the standards for experimental tests (see 

table 1). 

Table 1. Standards and normative. 

Design of stainless steel structures 

SEI/ASCE 8-02 [17] 

Specification for the Design of Cold-

Formed Stainless Steel Structural 

Members 

EN 1993-1-4 [6] 

Eurocode 3 - Design of steel structures - 

Part 1-4: General rules - Supplementary 

rules for stainless steels 

AS/NZS 4673 [18] Cold-Formed Stainless Steel Structures 

Experimental Test Methods 

ASTM E8 / E8M [19] 
Standard Test Methods for Tension 

Testing of Metallic Materials 

ASTM E606 / E606M [20] 
Standard Test Method for Strain-

Controlled Fatigue Testing 

EN 10002-1 [21] 

Metallic materials - Tensile testing - Part 

1: Method of test at ambient 

temperature. 

 

It is important to mention the Design Manual for Structural Stainless Steel [1] which 

was the first design guide for this alloy in Europe and was the basis for the Part 1-4 of 

the Eurocode 3 [6].   

Also the EN10088-1 [5] “Stainless steels – Part 1: List of stainless steels” was useful for 

obtaining the chemical composition of different stainless steel grades.  
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2.2. Cyclic plasticity   

In order to study cyclic plasticity, first, it is important to introduce plasticity in its broad 

sense.  

Several materials, especially metal alloys, exhibit reversible and irreversible deformation 

behaviour such that when a load is applied, a fraction of strain is recovered and the rest 

remain deformed. The fraction of reversible deformation is known as elastic range and 

the fraction of irreversible deformation as plastic range (see fig. 9). 

 

Fig. 9. Uniaxial loading of an elastoplastic bar: hardening when H’>0, perfect plasticity when H’=0, and 
softening when H’<0. [22] 

When a metal is elastically deformed, the load only alters the force balance of the atomic 

bonds, and the atoms assume new equilibrium positions, when the load is removed, the 

atoms return to their original position. On the other hand, in plastic deformation, the 

atoms slide over one another to produce a permanent shift of atom positions. As a result, 

a permanent change in the shape occurs. This plastic behaviour is due crystal 

dislocations in crystalline structures. [22] 

Plasticity has an important role in structural engineering, specifically in places where a 

structure may be subjected to extreme loading condition, such as earthquakes. Plastic 

deformation of structural members helps dissipate energy from earthquakes and 

enhance the structural performance of the building. 

2.2.1. Strain Hardening 

When metals are deformed in plastic range, they become harder and stronger, this 

phenomenon is called strain hardening. If a stress produces plastic deformation, an even 

greater stress will be required to continue the deformation. [23] 
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To better represent this phenomenon, a stress-strain chart is given (see fig. 10). In the 

chart, it is shown how a ductile metal will behave when subjected to slow loading and 

unloading. 

 
Fig. 10. Stress-strain diagram obtained by unloading and reloading a specimen. [23] 

When loading, plastically deform and unloading a specimen, the curve follows a path 

through points O, A, B and C. Upon reloading from point C, an elastic behaviour is 

observed as the stress follows the line C-D with a slightly different path from that of 

unloading. Point D is now the yield point for the material. When comparing point A with 

point D it is noticeable that the plastic deformation made the material stronger. This can 

be repeated and a new yield point (point E) is obtained. [23] 

When a material is strain-hardened and then subjected to reverse loading, the 

Bauschinger effect may occur.  

2.2.2. Bauschinger Effect  

For certain materials, the mechanical behaviour varies if the element was previously 

submitted to a history of deformations ad this is reflected in the stress-strain curve. 

When certain elements are submitted to a reversal loading, the yield stress in 

compression decreases with initial yielding tension, and vice versa, this phenomenon is 

known as Bauschinger Effect. In fig. 11, this phenomenon is shown in a stress-strain 

curve.  
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Fig. 11. Bauschinger Effect. [24] 

The mechanism behind the Bauschinger effect is attributed to a particular kind of 

residual stresses that form on the grain boundaries of polycrystals, and is related to the 

dislocation structure in a cold worked metal [22]. 

2.2.3. Isotropic and kinematic hardening 

In this section, an explanation of the analytical models that adequately take into account 

the phenomena explained in the previous sections is presented.  

An isotropic hardening law implies that the yield stress in compression increases by the 

same amount as the yield stress in tension, this means that for every incremental change 

in the yield stress ΔσY, the range of the elastic region changes by 2ΔσY. As a consequence 

isotropic hardening cannot capture the hysteretic response of a material subjected to 

cyclic loading [22].  

In order to model the cyclic behaviour of the material, a kinematic hardening law is 

implemented. A kinematic hardening law indicates that for every incremental change 

ΔσY, there is an incremental change -ΔσY in compression and vice versa. Therefore the 

elastic range does not change, it translates.  

Kinematic and isotropic hardening generate the same initial incremental plastic strain, 

the difference is in the predicted yield stresses on reverse loading (See fig. 12). As it can 

be seen, kinematic hardening predicts a lower yield stress in compression i.e. takes into 

account the Bauschinger effect.  

Material without previous 

strain 

Stretched material curve 

Curve with no Bauschinger Effect 
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Fig. 12. Types of hardening: (a) isotropic, and (b) kinematic. [22] 

A combined Isotropic/kinematic hardening can be used to describe a cyclic behaviour 

using an isotropic component and a kinematic component. With this type of hardening, 

it is possible to change and translate the elastic range of the material.  

2.2.4. Low-cycle fatigue (LCF) and Cyclic Stress-Strain Curve  

Unlike high-cycle fatigue which is related to an elastic phenomenon, low-cycle fatigue 

consists of repeatedly applied loads at high amplitudes, with plastic deformation in 

every cycle and with a number of cycles to failure from around 102 to 104 [25] [2]. This 

kind of fatigue may occur in structures that are subjected to small numbers of large 

displacement like earthquake-resistant buildings. When understanding the cyclic 

behaviour of a material subjected to low-cycle fatigue, it is not necessary to keep all the 

stress levels below a fatigue limit, as it would lead to an inefficient design. 

Low-cycle fatigue under constant-amplitude loading leads to a high plastic deformation 

in the first cycle followed by much smaller strain amplitudes in following cycles. 

Therefore it is important to impose constant strain cycles when studying this 

phenomenon in the laboratory [25].  

At constant strains, the stress amplitudes can increase or decrease. When increasing the 

material shows cyclic strain hardening and when decreasing it shows cyclic strain 

softening (see fig. 13). In both cases, the material stabilizes to a constant level after a 

number of cycles. 
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Fig. 13. Stress-strain loops during constant strain cycles of low-cycle fatigue and stress history charts. 

[25] 

Coffin and Manson [26] [27] observed that plastic strain-life data from low-cycle fatigue 

test indicates a linear relationship if plotted on a log-log scale. This observation forms 

the basis of the Coffin-Manson relationship shown in Eq. 11. 

∆휀𝑝

2
= 휀𝑓

′ (2𝑁𝑓)𝑐          (11) 

Where ∆휀𝑝/2 is the plastic strain amplitude,  휀𝑓
′  the fatigue ductility factor coefficient, c 

the fatigue ductility exponent and 2𝑁𝑓 the number of reversals to failure. 

To determine a cyclic stress-strain curve, there are different test methods proposed in 

the literature; namely the companion, multiple-step and incremental-step methods [28] 

[29]. The most suitable is the companion method, this method consists of testing 

several specimens, each one at a constant strain amplitude until failure (see fig. 14). Test 

data from this method allows the construction of the cyclic stress-strain curve of the 

material and it also allows obtaining its strain-life relationship. However, this method 

requires numerous quantity of coupons, long testing times and it may give ambiguous 

results as a consequence of constructing the curves with different specimens [27].  
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Fig. 14.Example of a strain history used in the companion test method. 

The multiple-step method consists of testing a single specimen at a constant strain 

amplitude until it stabilises and then increasing the strain amplitude. This process is 

repeated until a sufficient number of hysteresis loops is recorded to construct the cyclic 

stress-strain curve (see fig. 15). This method appears to be better suited for earthquake 

engineering studies [28] and has the advantage of constructing the cyclic stress-strain 

curve with a single coupon. Its use becomes restricted at large strain amplitudes because 

specimens are likely to fail prematurely before stabilisation is achieved. 

 
Fig. 15. Example of strain blocks used in the multiple-step test method. 

In the incremental-step method, a single specimen is subjected to repeated blocks of 

cycles that increase at each cycle until a certain strain amplitude is recorded and then 

decrease to the starting point (see fig.16). As well as the multiple-step method, this 

method has the advantage of constructing the cyclic stress-strain curve with a single 

coupon, but its use also becomes restricted due to premature failure. Nevertheless, the 

incremental-step method is not recommended because it is observed that the results 

from this method may deviate from the true cyclic stress-strain curve [28]. 

 
Fig. 16. Example of strain blocks used in the incremental-step method. 
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It is worth noticing that test with variable amplitude cannot be used to obtain the Coffin-

Manson parameters.     

2.2.5. Ratcheting 

Ratcheting is a progressive incremental plastic deformation resulting from stress-

controlled cyclic loading and it is divided in material ratcheting and structural ratcheting.  

Material ratcheting is related to the characteristic of the material and its response at a 

microstructural level. In practice, the residual strain that persists after cyclic loading can 

be seen as a measure of the ratcheting strain [30]. For material ratcheting to occur, a 

mean stress deviating from zero is necessary. When a material is subjected to stress 

controlled cycles, it starts accumulating strain and it increases in a cycle-by-cycle manner 

[30]. Typical material ratcheting is shown in fig. 17. 

 
Fig. 17. Experimental cyclic ratcheting for a uniaxial loading. [31] 

Material ratcheting is a phenomenon that must be taken into account when structures 

are subjected to plastic deformation in cyclic loading. Chaboche kinematic hardening 

model is an efficient model for ratcheting prediction [32]. 

Structural ratcheting is governed by the inhomogeneous stress state and it can occur 

without the influence of material ratcheting [30]. 

2.3. Previous studies about cyclic plasticity in stainless steel 

There are numerous studies that have served as a reference for this research project. In 

this section, important aspects of these studies will be summarized and key elements 

will be compared between the different studies.  

Previous studies performed experimental tests to obtain the mechanical properties of 

stainless steel, these test involved monotonic tensile tests and cyclic axial tests among 

others. In general, monotonic tensile tests were performed to obtain properties such as 

Young’s modulus and yield strength; as well as strain hardening data. On the other hand  
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cyclic axial tests were strain controlled in order to obtain representative cyclic hardening 

data. Most of the studies have carried out cyclic axial tests of round and/or flat coupons 

using the companion method and/or multiple-step method. 

The studies agree that, in order to establish analytical models and perform numerical 

simulations of the cyclic plasticity of stainless steel, cycle tests involving companion 

method are necessary. These tests were strain controlled and the coupons were 

subjected to cycles of strain amplitudes ranging from ±0.3% to ±7% (covering the low-

cycle and extremely low-cycle fatigue) at strain rates ranging from 0.0005s-1 to 0.005s-1. 

The cyclic tests results were used to construct cyclic stress-strain curves, as well as to 

obtain cyclic hardening data which is necessary to establish the analytical model. The 

cyclic stress-strain curves were plotted along with the monotonic tensile stress-strain 

curves in order to compare them and show the strain hardening. 

When using a FEM Software to simulate the cyclic plasticity, all the studies agree with a 

combined isotropic/kinematic model known as Chaboche model [15]. In order to use 

this model, data from hysteresis loops are extracted and used as input as explained in 

section 2.2.5. Subsequently, the parameters that define this model (𝜎|0 , 𝑄∞ , 𝑏 , 𝐶𝑘 , 𝛾𝑘) 

are calibrated. The experimental and FE simulated hysteresis curves were plotted for 

comparison and validation.  

Some of the conclusions from those papers that are relevant for this research project 

are presented as follows: 

- Combined isotropic-kinematic hardening model is proved more accurate in 

simulating the cyclic stress-strain behaviour of various steel grades in 

comparison to Ramberg-Osgood model. [33] 

- Cyclic stress response of the material was characterized by initial hardening 

followed by softening near failure. [34] 

- The Ramberg-Osgood model gave excellent agreement with monotonic 

stress-strain curves. Under cyclic loading, stainless steel exhibited remarkable 

cyclic hardening and excellent hardening behaviour. The simulated curves 

agreed with the test and the cyclic hardening parameters obtained can be 

used in engineering practice. [35] 

- Cyclic hardening rate increases with strain amplitudes. [36] 

- The strength of duplex steel is increased by 10% by cyclic hardening. [37] 

- Stainless steel, which displays substantial strain hardening in monotonic 

tensile tests, also demonstrated a much larger degree of cyclic hardening than 

two carbon steel materials. [2] 

- The hysteresis loops of structural stainless steels are plump, stable and 

symmetric to the origin. [3] 

- The austenitic stainless steel type 304 has larger cyclic hardening level 

compared to lean duplex stainless steel LDX2101. [3] 
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It is convenient to construct a comparative table in which key elements from different 

previous studies are shown.  

In table 2, basic specifications of the test performed are shown. The test methods, the 

strain amplitudes, the strain rates and the kind of coupon that were used in the cyclic 

tests are compared. The strain rates vary markedly, the highest rate is 10 times higher 

than the lower rate, nevertheless, these strain rates are low and prevent heat from 

altering the results.  

Table 2. Comparative table of previous studies (part1). 

Previous Study Methods Amplitude Strain 
rate Coupon 

K.H. Nip et al. [2] Companion 
±1%, ±3%, 

±5%, ±7% 
0.005s-1 Flat 

F. Zhou, L. Li [3] 

Multiple-step, 

Cyclic alternate 

and             

Cyclic tensile 

From ±0.5% 

to ±2% 
0.0005s-1 

Flat and 

round 

A. Dutta et al. [36] Companion  
From ±0.3% 

to ±1.2% 
0.001s-1 - 

S. Chandra Roy et al. [34] Companion  
From ±0.3% 

to ±1% 
0.003s-1 Round 

Y.Q. Wang et al. [35] 

Companion, 

multiple-step, 

among others 

From 

±0.4% to 

±1% 

0.05Hz Flat 

In table 3, results from tests regarding the parameters that define the characteristics of 

the material are presented. The parameters obtained from the monotonic test like 

Young’s modulus and yield strength are fairly similar, on the other hand, the combined 

Kinematic/isotropic hardening parameters vary even in the same study. 

Table 3. Comparative table of previous studies (part2). 

Previous Study 
Steel 

Grade 
EN 

E 
(N/mm2) 

Yield 
strength 

(𝜎0.2) 
(N/mm2) 

Combined hardening parameters 

Amp 𝜎|0* 𝑄∞* b 𝐶𝑘* 𝛾𝑘 

K.H. Nip et al. [2] 

1.4301 

and         

1.4307 

201 300 419 ±1% 224.5 431.5 0.1625 175450 420.5 

197 730 483 ±3% 236.8 516.8 1.165 82675 185.5 

197 960 552 ±5% 246 418.4 2.164 88520 179.6 

191 690 538 ±7% 224.5 593.5 1.7625 125600 215.5 

F. Zhou, L. Li [3] 
1.4301 204300 310.7 

No data available 
1.4162 204700 470 

A. Dutta et al. [36] 1.4401 200000 - ±0.6% 225 60 9.71 42096 594.5 

S. Chandra Roy et al. [34] 1.4404 - - ±0.5% 211 42.3 21.6 57805 619.04 

Y.Q. Wang et al. [35] 1.4401 209500 356.5 ±0.4% 234 77 10.5 56760 420 

*Values in (N/mm2). 
Bold indicates mean values from different coupons. 
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As mentioned before, some results are plotted as a cyclic stress-strain curve that can be 

obtained from half of a stable block, each data pair is obtained from a cyclic test at 

different amplitudes. A typical plot of the cyclic stress-strain curve along with the 

monotonic tensile stress-strain curve is sown in fig. 18. 

 
Fig. 18.Example of comparison of cyclic and monotonic stress-strain curves for cold-formed stainless steel 

50 x 50 x 3 specimens. [2] 

Another interesting result is the plot of hysteresis loops obtained from a test in contrast 

with the FE model simulated with the parameters obtained from the same test. A typical 

plot is exhibited in fig.19. 

 
Fig. 19.Example of experimental and FE simulated stress-strain hysteresis curves of a cold-formed 

stainless steel specimen in the first 2 cycles of  1% strain amplitude tests. [2] 

 

 

 

 

 



32 
 

3. NUMERICAL MODELLING  

In engineering, a common numerical method is the finite element method (FEM) which 

is able to perform a structural analysis by subdividing large structures into smaller and 

simpler elements. 

3.1. A brief introduction to the finite element method (FEM) 

Since the beginning of the development of the FEM in the 1940s, throughout the years 

it has become a reliable method for the resolution of different kinds of engineering 

problems including structural analysis. Its use has risen in the last decades due to the 

great development of computer hardware and software. [38] 

The finite element method is a method for solving problems involving engineering and 

mathematical physics concerning many fields of application like structural analysis, 

fluids flow, acoustics, aerodynamics, geophysics, oceanography, meteorology, 

electromagnetics, plasma physics, among others [39]. To solve these problems, the 

method uses a program to subdivide a continuous system into simpler discrete elements 

(finite elements), each element has equations that rule its behaviour, and therefore this 

produces a large number of algebraic equations that the method resolve using a 

numerical approximation. 

The set of the subdivided elements is called mesh. The mesh consists of all the finite 

elements and nodes that shape the problem, the nodes connect the elements to each 

other. The elements can be one-dimensional, two-dimensional or three-dimensional, 

with different shapes (like hexahedron or wedge Elements) and different order (first-

order or second-order) depending on the complexity of the engineering problem, the 

information to extract and the computational capacity. Once the mesh is generated, 

numerical methods are implemented and the equation system is solved.  

After this step comes a phase called post-processing. In the post-processing phase, a 

large number of results are organized such that they are easily understandable and be 

compared to the physical phenomenon. It is important to recall that the FEM shows an 

approximate solution and therefore the model has to be precise and carefully meshed 

with the possibility of being compared with a known problem as a sort of calibration.   

3.2. Software 

The computer software ABAQUS-Simulia was used to carry out the numerical 

simulations. ABAQUS is a commercial software that uses FEM to resolve all kinds of 

engineering and mathematical physics problems. The software has two parts: 

- Abaqus standard is the one that solves problems applying the finite element 

method (FEM). To execute any kind of analysis, the program requires an input 

file (.INP) that contain the commands in Phyton programming language.  
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- Abaqus-CAE is a user-friendly user interface (UI) from which the input file can be 

generated easily, also the UI is very convenient to show the results more 

interpretable in the post-processing.  

The feature of using Phyton programming language is advantageous since it adds 

versatility in a way that it is possible to create protocols of parametric studies with 

several vectors of variables and, with the help of macros, the results of the parametric 

studies are extracted automatically.  

It is important to highlight that Abaqus does not work with a specific unit system, this 

means that the input must have consistency in all the units. In this research project, the 

international unit system was used when employing Abaqus software, the detailed unit 

are shown in table 4.  

Table 4. Unit system used in Abaqus software. 

 Unit 

Distance Millimetre (mm) 

Force Newton (N) 

Mass Ton (ton) 

Tension (N/mm2) 

Density (ton/mm3) 

Time Seconds (s) 

 

3.3. Modelling Specifications 

In this section, general aspects of the numerical model are described in order to show 

how the problem is represented in the software and how the analysis is executed.  

Analyses  

In this research project there are 3 different analyses: 

- Buckling: in this analysis, the model is subjected to axial load or displacement 

and the eigenvalues are determined. This analysis is used for the Coupon design 

(section 4.1). 

- Monotonic tensile: in this analysis, the model is subjected to a monotonic tensile 

displacement simulating the tensile test. This analysis is used in the convergence 

analysis (section 3.3). 

- Cyclic axial: in this analysis, the model is subjected to a periodic axial load or 

displacement that follows certain amplitude. This analysis is used in the 

comparison between FEM and experimental tests (chapter 6). 

These analyses are defined in the model steps, this is explained later in this section.  
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Model 

The three-dimensional geometry of the element of study is delineated with Abaqus-CAE 

sketcher tool. The adequate tool to draw cylindrical objects is with the Sweep-type 

sketch. The features of the model are set as a deformable solid.  

The geometry of the element consists of a cylindrical solid with a reduced cross-section 

length in the middle (see fig. 20). For more details of the geometry and the coupon 

design, see section 4.1. 

 
Fig. 20. Simulated coupon. 

After creating the geometry of the model, the material is defined. In order to do so, one 

general property and two mechanical proprieties are necessary:  

- Density: consist of the mass-volume ratio in ton/mm3. 

- Elastic behaviour: the Young’s Modulus and Poisson’s ratio are defined.  

- Plastic behaviour: the hardening and cyclic hardening behaviour are defined.  

As for the plastic behaviour, it is important to highlight that one of the objectives of this 

research project is to determine parameters that would simulate the actual cyclic 

plasticity of the stainless steel, therefore several hardening parameters will be taken 

into account. The details about the material model used are explained in chapter 6. 

The section of the model is defined as a solid and homogeneous section with the 

properties of the previously defined material.  

Step 

In Abaqus software, the problem is divided into steps. The steps are phases of the history. 

They contain the type of analysis and additional data, such as external actions and 

boundary conditions. When a step is running, the algorithm updates the size of the 

increments automatically until the step is completed, this increments can also be 

controlled when setting up the step. 

In this project the following steps were used: 

- Initial step: The initial conditions of the problem, such as boundary conditions, 

are defined.  
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- Analysis step: Following the initial step is usually an analysis step. A “static, 

general” step (classified as “general”) is the analysis applied to most of the cases 

of study of this project, including cyclic loading.  A “buckle” step (classified as 

“linear perturbation”) is the analysis applied to the buckling analysis in order to 

design the coupons. 

External Actions 

The external actions consist of loads or displacements depending on the case: for the 

cyclic loading and monotonic loading analysis, the external actions are set as 

displacements. The displacement follows a tabular amplitude that describes the cyclic 

or monotonic behaviour (see fig. 21). As for the buckling analysis, both load and 

displacement were applied in different analyses in order to obtain the eigenvalues that 

determine the load or the displacement that would cause the buckling failure of the 

element.  

Mesh and finite element type 

Once the geometry, the material and the section of the element of study are defined, 

the mesh can be generated along with the finite elements (see fig. 20). The finite 

elements are joined by nodes and together they form the whole element and describe 

its behaviour, the smaller the finite elements the more precise are the results, but at the 

cost of reduced computing performance and increased running time. There are different 

types of finite elements and, as well as the element size, it affects the precision and 

computing performance. It is important to balance both element type and element size 

in order to obtain results with a fairly small error and in a relatively short time.  

When talking about 3D finite elements there are several element types that Abaqus 

supports: Hexahedron, tetrahedron and wedge elements. Each element has a linear or 

quadratic geometric order, which establishes the number of nodes in each element.  
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Fig. 21. Example of a tabular amplitude. 
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Choosing a specific finite element type depends on many factors, including the shape of 

the element and the analysis type. Although the geometry of the element and the 

analyses types in this research project are quite simple, a convergence study was made 

in order to compare the different element types and choose the adequate one.  

Convergence study 

Seven monotonic tensile analyses with different mesh configurations were studied. A 

non-linear stainless steel material is set in the analyses.  

It is worth noticing that, although the convergence study is made with monotonic tensile 

analyses, the resulting element type will be used in the cyclic analyses.  

In the following figure, a comparison between three element types is shown in a Stress-

Strain and a Reaction force-Displacement graphs (figure 22A and figure 22B respectively). 

It is important to point out that in these three analyses, the elements are meshed with 

the default mesh algorithm and with an approximate global size of 3 millimetres, 

generating a total number of elements of 4526, 14793 and 5767 for Hexahedron, 

Tetrahedron and Wedge element type respectively. 

 
Fig. 22. Comparison between finite element types (global size of 3mm) in Stress-Strain chart (A) and 

Reaction force-Displacement chart (B) of monotonic analyses. 

Although the running times of the three element types are similar (around 10 minutes), 

it is noticeable that the results differ from each other. When comparing the monotonic 

analysis with the material curve used in the analysis (input material), the finite element 

type that follows the correct behaviour is the hexahedron element.  

To ensure that the hexahedron is the best option, the analyses were repeated with an 

approximate global size of 1.5 millimetres generating a total number of elements of 

28120, 104984 and 47952 for Hexahedron, Tetrahedron and Wedge element type 

respectively. As a result, the behaviour of hexahedron of 1.5mm is practically identical 

to that of the hexahedron of 3mm and the behaviour of the tetrahedron and the wedge 

elements differs from the hexahedron the same way as their counterparts, but with a 

smaller error (see figure 23). Therefore it is concluded that the hexahedron finite 

element is suitable to further analyses.  
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Fig. 23. Comparison between finite element types (global size of 1.5mm)  in Stress-Strain chart (A) and 

Reaction force-Displacement chart (B) of monotonic analyses. 

As previously mentioned, each finite element type has a linear or quadratic geometric 

order, so it is important to compare the difference between a linear hexahedron 

element and a quadratic hexahedron element including reduced integration and full 

integration of each one. The comparison of all these cases is shown in figure 24. 

 
Fig. 24. Comparison between hexahedron geometry order in Stress-Strain chart (A) and Reaction force-

Displacement chart (B) of monotonic analyses. 

As it is shown, in this particular case and with this size of finite element, changing either 

the geometric order or the integration method, doesn’t have a significant impact on the 

mechanical behaviour. Therefore, the finite element type that better suits the analysis 

is the one with better computational performance (the one that lasts less), in this case, 

the hexahedron with a linear geometric order and with reduced integration method. 

This element is classified in Abaqus as C3D8R and it is an 8-node linear brick with 

reduced integration (see fig. 25). 

 
Fig. 25. Finite element C3D8R. 
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3.4. Obtaining the results 

After running all the analyses comes the post-processing phase where all the useful data 

is extracted. In this phase, it is possible to obtain variables that describe the behaviour 

of the element and compare them in a chart, as well as show them in a graphical display. 

The variables of interest in this research project are the ones associated with mechanical 

behaviours, such as strain, plastic strain, stress, load, reaction force and displacement. 

There is a value for each variable in each increment of the step, this means that, when 

obtaining variables in a chart, there are many (X, Y) data pairs as there are increments.  

The results has to be extracted from an finite element or a node, in this project the nodes 

of interest are the ones where the load or displacement is applied and the ones where 

the boundary conditions are established, as for the finite elements the ones used for 

obtaining variables are the ones located in the cross-section of the centre of the element 

of study.  
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4. EXPERIMENTAL TEST 

In this chapter, an exhaustive description of the experimental process is presented; 

starting with the geometry of the coupons and the instrumentation implemented in 

the test, and followed by the test set up section which describes the preparation of the 

coupons and the tests machine, as well as the loading protocols applied.   

4.1. Coupon Design 

The geometry of the test coupons consists of a cylindrical bar made with hot-rolled 
austenitic stainless steel, which includes a central region of reduced cross-sectional area 
(made with a lathe) to constrain the place at which the fracture occurs (see fig. 26).  

 
Fig. 26. Coupon scheme. 

For the first approach to the geometry of the test coupons, it is necessary to start with 
the length of the reduced cross-section; in order to do so, preliminary calculations were 
done. When subjected to compressive strength, the coupon is susceptible to an 
undesired buckling failure and therefore it is important to prevent it. In the preliminary 
calculations, the Euler’s critical load is taken into account to determine the strain and 
displacement that would cause the buckling failure of this region at a variety of lengths. 
With this range; it is possible to select a potential range of lengths that prevent buckling.  

Taking as reference different coupons in previous studies and the previously mentioned 
standards, the dimensions of the reduced cross-section cylinders used in the buckling 
analysis were 9mm and 10 mm diameter and lengths from 10mm to 50mm, with Young’s 
modulus of 193 and 210GPa.  

Considering the unfavourable situation in which the boundary conditions of the central 
region are pinned supports and, hence, a critical length equal to the member length, the 
following results are obtained (see table 5, 6, 7 and 8). Equations 12 and 13 are used to 
determine the critical load and the displacement that would cause buckling. 

It is important to notice that these calculations are made assuming an elastic behaviour 
of the material and not taking into account the non-linearity. This allows to simplify the 
calculations and the obtained result are conservative. 

𝜎 =
𝐹

𝐴
   ;    𝜎 = 𝐸 ∙ 휀   ;    휀 =

𝛿

𝐿
    ;   𝐹𝑐𝑟 =

𝜋2 ∙ 𝐸 ∙ 𝐼

𝐿𝑐𝑟
2    (12)  ;   𝐼𝑂 =

𝜋

4
∙ 𝑟4  ;   𝐴𝑂 = 𝜋 ∙ 𝑟² 
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𝐿𝑐𝑟
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𝐿
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Table 5. Critical load, strains and displacement of reduce area region. 10mm diameter. E=193GPa. 

r (mm) L (mm) δ (mm) ε ε% Fcr (kN) 

5 10 6.17 0.62 61.69 9350.33 

5 15 4.11 0.27 27.42 4155.70 

5 20 3.08 0.15 15.42 2337.58 

5 25 2.47 0.10 9.87 1496.05 

5 30 2.06 0.07 6.85 1038.93 

5 35 1.76 0.05 5.04 763.29 

5 40 1.54 0.04 3.86 584.40 

5 45 1.37 0.03 3.05 461.75 

5 50 1.23 0.03 2.47 374.01 
 

Table 6. Critical load, strains and displacement of reduce area region. 9mm diameter. E=193GPa. 

r (mm) L (mm) δ (mm) ε ε% Fcr (kN) 

4.5 10 5.00 0.50 49.97 6134.75 

4.5 15 3.33 0.22 22.21 2726.55 

4.5 20 2.50 0.13 12.49 1533.68 

4.5 25 2.00 0.08 7.99 981.56 

4.5 30 1.67 0.06 5.55 681.63 

4.5 35 1.43 0.04 4.08 500.79 

4.5 40 1.25 0.03 3.12 383.42 

4.5 45 1.11 0.03 2.47 302.95 

4.5 50 1.00 0.02 2.00 245.39 

 Table 7. Critical load, strains and displacement of reduce area region. 10mm diameter. E=210GPa. 

r (mm) L (mm) δ (mm) ε ε% Fcr (kN) 

5 10 6.17 0.62 61.69 10173.93 

5 15 4.11 0.27 27.42 4521.74 

5 20 3.08 0.15 15.42 2543.48 

5 25 2.47 0.10 9.87 1627.83 

5 30 2.06 0.07 6.85 1130.43 

5 35 1.76 0.05 5.04 830.52 

5 40 1.54 0.04 3.86 635.87 

5 45 1.37 0.03 3.05 502.41 

5 50 1.23 0.03 2.47 406.95 

Table 8. Critical load, strains and displacement of reduce area region. 9mm diameter. E=210GPa. 

r (mm) L (mm) δ (mm) ε ε% Fcr (kN) 

4.5 10 5.00 0.50 49.97 6675.11 

4.5 15 3.33 0.22 22.21 2966.71 

4.5 20 2.50 0.13 12.49 1668.78 

4.5 25 2.00 0.08 8.00 1068.01 

4.5 30 1.67 0.06 5.55 741.68 

4.5 35 1.43 0.04 4.08 544.90 

4.5 40 1.249 0.03 3.12 417.19 

4.5 45 1.11 0.03 2.47 329.63 

4.5 50 1.00 0.02 2.00 267.00 
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An analysis of the results obtained in the previous tables allows to know the maximum 

length of the reduced cross-section that prevents buckling at certain strain.  

On the other hand, the space necessary to attach the instrumentation is determinant to 

establish the mentioned length. Therefore, a minimum length is necessary to adequately 

attach a strain gauge. 

Considering the above and taking as a reference that the test could reach around 10% 

of strain amplitude, it is established a potential range of reduced lengths between 15 

and 22.5 mm and a diameter of 10mm. As a result, buckling is fairly prevented, the strain 

amplitude is sufficient for the test and the coupon provides enough space for the strain 

gauge. 

With a first approach of the dimensions established, numerical models were used to 

perform a buckling analysis and estimate the critical load of the whole coupon, using the 

nonlinear finite element software Abaqus. In these models, the boundary conditions are 

fixed supports and are located in the grip section, imitating the jaws of the test machine. 

Foreseeing that the jaws could be placed at different distances in the grip section and 

therefore have an impact in the buckling behaviour, the models were executed with a 

variety of lengths between jaws (Ljaws) or coupon span (see fig. 27). The objective of 

these models is to get loads, displacements and strains that would cause the buckling 

failure of the whole test coupon in order to set final dimensions for coupons that safely 

satisfy the requirements of the cyclic test i.e. reach certain strain amplitude without 

buckling. 

It is worth noticing that the jaws of the test machine, which are used to grip the coupon 
by friction, set the diameter of the grip section at 20mm. And the radius of the transition 
(radius of fillet) is set at 30mm, this dimension is obtained from previous studies and it 
satisfies the ASTM E606 / E606M [20] standard. 

 
Fig. 27. Scheme of the coupon held by the test machine.   

As well as the previous calculations, the models consider an elastic behaviour and were 

made with Young’s modulus of 193 and 210GPa. The following results are shown.  

Tables 9, 10, 11 and 12; present the results of the buckle analyses performed in Abaqus. 

The tables show displacements (δ), strains (ε) and loads (Fcr) that would cause buckling 

of the coupon. Figures 28, 29 and 30 show these results in charts for a better 

representation with the addition of the previous results (critical loads for reduced cross-

section cylinders) as a top limit. 
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Table 9. Critical loads, strains and displacements. 15mm length of reduced cross-section. E=193GPa. 

Ljaws δ (mm) ε Fcr (kN) 

69.42 6.32 0.15 2222.30 

90.67 6.08 0.13 1899.00 

111.92 5.39 0.10 1514.80 

133.17 4.56 0.08 1165.00 

154.42 3.84 0.06 899.02 

175.67 3.28 0.05 709.54 

196.92 2.84 0.04 570.94 

218.17 2.51 0.03 471.16 

Table 10. Critical loads, strains and displacements. 22.5mm length of reduced cross-section. E=193GPa. 

Ljaws δ (mm) ε Fcr (kN) 

76.92 5.55 0.11 1659.30 

98.17 5.48 0.10 1480.40 

119.42 5.09 0.08 1253.70 

140.67 4.47 0.07 1013.50 

161.92 3.84 0.05 805.49 

183.17 3.31 0.04 645.83 

204.42 2.87 0.04 524.12 

225.67 2.54 0.03 434.57 

 

 
Fig. 28. Variation of critical loads at different lengths between jaws. E=193GPa. 
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Table 11. Critical loads, strains and displacements. 15mm length of reduced cross-section. E=210GPa. 

Ljaws δ (mm) ε Fcr (kN) 

69.42 6.32 0.15 2418.00 

90.67 6.08 0.13 2066.20 

111.92 5.39 0.10 1648.20 

133.17 4.56 0.08 1267.60 

154.42 3.84 0.06 978.21 

175.67 3.28 0.05 772.04 

196.92 2.84 0.04 621.24 

218.17 2.51 0.03 512.66 

Table 12. Critical loads, strains and displacements. 22.5mm length of reduced cross-section. E=210GPa. 

Ljaws δ (mm) ε Fcr (kN) 

76.92 5.55 0.11 1805.40 

98.17 5.48 0.10 1610.80 

119.42 5.09 0.08 1364.20 

140.67 4.47 0.07 1102.80 

161.92 3.84 0.05 876.44 

183.17 3.31 0.04 702.72 

204.42 2.87 0.04 570.29 

225.67 2.54 0.03 472.84 

 
Fig. 29. Variation of critical loads at different lengths between jaws. E=210GPa. 

A good way to display the results is with a chart containing the values of strain versus 

the test coupon span (Ljaws) because the strain that causes buckling is not a function of 

Young’s modulus and therefore the chart works for any test coupon of this dimensions 

regardless of this modulus (see fig. 30). 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

Fc
r 

(k
N

)

Ljaws (mm)

15mm

15mm simply supported

22,5mm

22.5mm simply supported



44 
 

 
Fig. 30. Variation of strain that would cause buckling at different lengths between jaws.  

As it is shown in the results, the test coupon of 15mm of reduced section clearly satisfy 

the stipulated criteria, giving a wide range of lengths in which the coupon can be 

subjected to a compression strain of around 10% without buckling. Considering that the 

length between the grip sections i.e. the minimum length between the jaws of the 

apparatus, is 48.2mm, the range on which the coupon could reach a strain of 10% 

without buckling goes from 48.2mm to around 110mm. Whilst the 22.5mm coupon 

presents a range from 55.7mm to 95mm making it less attractive for the test.  

After all the previous results, the most appropriate length of reduced cross-section is 

15mm. 

When requesting the coupons from the manufacturer, they requested changing the 

radius of fillet from 30mm to 10mm. This was due to similarities with a kind of coupon 

that they commonly fabricate for tensile testing following the standard for tensile tests 

ASTM E8/E8M – 09 [19]. The request was discussed and accepted. Therefore, further 

analyses with the new geometry (see fig. 33) were made and the following results are 

obtained (see tables 13 and 14).  
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Table 13. Critical loads, strains and displacements. 15mm length of reduced cross section and 10mm 
radius of fillet. E=193GPa. 

Ljaws δ (mm) ε Fcr (kN) 

58.05 7.40 0.22 3215.80 

83.78 6.80 0.17 2487.30 

109.51 5.38 0.11 1701.70 

135.24 4.20 0.08 1169.00 

160.97 3.40 0.06 845.60 

186.70 2.85 0.04 640.73 

212.44 2.46 0.03 504.01 

238.17 2.17 0.03 408.35 

 

Table 14. Critical loads, strains and displacements. 15mm length of reduced cross section and 10mm 
radius of fillet. E=210GPa. 

Ljaws δ (mm) ε Fcr (kN) 

58.05 7.40 0.22 3499.00 

83.78 6.80 0.17 2706.40 

109.51 5.38 0.11 1851.60 

135.24 4.20 0.08 1271.90 

160.97 3.40 0.06 920.09 

186.70 2.85 0.04 697.17 

212.44 2.46 0.03 548.40 

238.17 2.17 0.03 444.32 

 

 
Fig. 31. Variation of strain that would cause buckling at different lengths between jaws. 

As it is shown in the previous chart (fig. 31), the final coupon also fulfils the criteria 

preventing buckling for a coupon span of up to around 115mm at 10% strain.  
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Fig. 32. Example of a buckling analysis results. 

Finally, taking into account previous studies, the characteristics of the test apparatus, 

the load, strain, and displacement from the buckling analysis, the strain amplitude 

required for the test, and the coupon provider, the final dimensions of the test coupon 

are established and shown in figure 33. As a result, the actions applied in the test is far 

from the ones that would cause its buckling. 

 

 
Fig. 33. Dimensions of the designed test coupon (in mm). 

4.2. Instrumentation 

In this section, all the equipment necessary to perform the tests is described. 

Instron 8803 

Instron 8803 is a versatile servo-hydraulic axial fatigue testing system with two-column 

load frame and an actuator of up to 500kN. It performs static and dynamic tests on 

materials and components providing complete testing solutions to satisfy the needs of 

advanced materials and component testing, and it is suited for fatigue testing and 

fracture mechanics (see fig.34). 
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The testing machine has hydraulic sets of jaws for cylindrical coupons from 5mm to 

20mm. 

 
Fig. 34. Intron 8803 testing machine. 

Features of interest: 

- Double-acting servohydraulic actuator with force capacity up to ±500 kN. 

- High-stiffness, precision-aligned load frame with twin columns and actuator in 

the lower base or upper crosshead. 

- Up to 250 mm of usable stroke. 

- Hydrostatic bearing actuators for high side-load resistance and better alignment 

during testing. 

Extensometer  

In order to obtain the displacement applied in the test, an extensometer is set up on the 

test coupon (see fig.35).  The extensometer used in this research project is a Clip-On 

Epsilon Extensometer model 3541-005M-0635M-ST which has a gauge length of 5.0mm 

and a measuring range of 6.35mm. 
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Fig. 35. Coupon with an extensometer. 

Strain gauges 

In this research project the strain gauges used are post-yield strain gauges model YFLA-

5-3LJCT-F (see fig. 36). The gauges have a gauge length of 5mm, a coefficient of thermal 

expansion of 11.8x10-6/°C, an electrical resistance of 119.5±0.5Ω and a gauge factor of 

2.11±2%.  They have a strain limit of around 10 and 15% and a fatigue limit of around 

100 cycles [40]. 

 
Fig. 36. Strain gauges box (left). Strain gauge (right). 

Strain gauges are devices used to measure strain on an object. They are formed by small 

resistances made of alloys, most of them of Cu 55% y Ni 45%. The metallic threads of 

the gauge are attached to a support material which serves as an insulator and keeps the 

sensitivity of the metallic threads in one direction (See fig. 37). 

 

 
Fig. 37. Unidirectional strain gauge [41]. 
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The gauge is in direct contact with the structure or test subject in a way that it suffers 

the same deformation. Basically, when the metallic thread of the gauge suffers length 

variations, its electrical resistance varies as well, and therefore a relationship between 

the strain and the resistance can be established (see fig. 38).  

 

 
Fig. 38. Visualization of the working concept behind the strain gauge on a beam under exaggerated 

bending. [42] 

The functioning of a strain gauge is based on the Ohm's Law where the electrical 

resistance of a conductor may be expressed as:  

𝑅 = 𝜌
𝐿

𝐴
      (14) 

where ρ is the electrical resistivity, L the length of the conductor and A the cross-section.   

After mathematical formulations, a new expression that establishes a relationship 

between strain and electrical resistance is obtained and given in Eq. (15).  

휀 =
1

𝐾

∆𝑅

𝑅
     (15) 

Where K is a constant named gauge factor that involves the Poisson’s coefficient and 

the Bridgman constant; and ∆R/R is the variation of the resistance.  

To sum up, the strain gauge is an electrical resistance that follows Ohm’s law. When 

subjected to deformation, the materials of which the gauge is made, alter the resistance 

value. When compressed, the resistance is lower and in tension, the resistance is higher 

and with the expression Eq. 15 it is possible to establish a relationship between the 

electrical resistance of the strain gauge and the strain of the material from which it is 

attached. 

Stainless steel coupons 

The previously designed coupons (see section 4.1) are provided by the company 

Roldan/Acerinox (see fig. 40).  A total of 5 coupons were provided and their dimensions 

(see fig. 39) were measured and shown in table 17. 

 
Fig. 39. Measurement nomenclature for the coupons. 
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Table 15. Coupon measurements. 

Coupon L1 (mm) L2 (mm) c (mm) D1 (mm) D2 (mm) d (mm) 

1 108.68 109.97 31.21 19.98 19.96 10.00 

2 108.60 112.70 30.72 19.98 19.95 10.00 

3 108.09 111.56 30.77 19.95 19.95 10.02 

4 108.39 112.52 30.45 19.96 19.96 10.02 

5 109.41 111.42 30.86 19.95 19.96 9.99 

 

  
Fig. 40. Stainless steel coupons. 

Data acquisition system 

For data acquisition (DAQ), the system used was the MGCplus (see fig.41). The MGCplus 

is a DAQ system suitable for acquiring force, strain, displacement, torque, voltage, 

current, temperature and other parameters in a numerous kind of tests, including 

fatigue tests. To obtain the data, it uses connection boards with 25pin serial 

communication ports along with the software Catman which is meant to parameterize 

and visualize large number of measurements channels. Both the MGCplus and Catman 

are products of HBM. 

  
Fig. 41. MGCPlus DAQ system. 

4.3. Test set up 

Before proceeding to test the coupons, the strain gauges need to be placed in the 

reduced cross-section of the coupons. In order to do so, it is required to follow a rigorous 

procedure that will ensure that the strain gauge will indicate reliable and accurate 

measurements.  
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- Surface polishing:  

The surfaces in contact with the strain gauges need to be polished. To do so, the 

coupon needs to be carefully hold tight with a clamp, and with a rotary tool, the 

surface is polished. Note that safety equipment is necessary.  

It is worth mentioning that, in stainless steels, the finishing is already quite 

polished and therefore the polishing procedure does not require much time. 

 

  
 

- Surface cleaning:  

Once polished, the leftovers must be removed. A sterile gauze along with 

degreaser and rubbing alcohol are used to clean the surface and remove and any 

particle. Once clean it is important to avoid touching the surface.  

 

  
 

- Placement of the strain gauge:  

First, it is important to notice that the gauge cannot be touched with bare hands. 

One way to place the gauge is attaching a cello tape in the face that does not 

make contact with the coupon and then placing it carefully aligning the centre of 

the coupon with the guidelines in the gauge. If the gauge is correctly aligned, the 

tape can be completely glued.   

It is worth noticing that due to the dimensions of the reduced cross-section, only 

two strain gauges are placed per coupon.  

- Adhesion of the strain gauge: 

In order to adhere the gauge, a product called cyanoacrylate CN-Y is used. The 

tape is pulled and a drop of cyanoacrylate is placed in the centre of the gauge 

and then returned to its place using the previously attached tape. 

- Drying of the adhesive: 
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To correctly dry the adhesive and ensure the attachment of the gauge, it is 

recommended to apply pressure on top of the gauge for about 4 minutes. 

- Extraction of the cello tape: 

To remove the tape a special care is required, the gauge can easily get stuck in 

the tape if the cyanoacrylate is not completely dry. If this happens, the process 

will need to be repeated and apply pressure for a longer time to ensure that the 

adhesive is dry.  

 
- Insulation of the strain gauge cables: 

After extracting the cello tape, it is important to insulate the part of the wires 

that lacks jacket. Although they already have an insulating coating, an insulating 

tape is used in the coupon surface to avoid any possible contact between the 

cables and the coupon steel. 

 

If necessary, after completing the steps, a cable tie can be used to secure the cables and 

prevent the gauge from tearing off. To add the second gauge, the steps are repeated.  

- Resistance testing:  

Once all the strain gauges are in place, it is essential to test the electrical 

resistance to ensure that it has not been modified by placing it in the stainless 

steel coupon. 

In order to do that, a multimeter is used. The multimeter is set up in electrical 

resistance measurement (Ω), the black probe gets in contact with the blue cable 
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and the red probe with each of the grey cables. The electrical resistance must be 

119.5±0.5 Ω. 

- Protecting the strain gauge: 

Once the gauge is properly placed and the resistance verified, layers of covering 

putties are used to protect the strain gauges from the environment. The first 

putty is made of butyl rubber, is called SB tape and it is a moisture- and water-

proofing coating for laboratory environment, it is used as a first coating. The 

second putty is a vinyl/mastic tame (VM tape) and is used as a second coating 

also for moisture sealing. 

  

                      

Finally, two plates are glued to the coupon to facilitate the placement of the 

extensometer. The Resulting coupon is shown in figure 42.  

 
Fig. 42. Coupon ready for testing. 

Once the test coupons were properly equipped, they are ready to be tested using the 

previously mentioned Intron 8803 testing machine. To proceed with the testing, the 

machine and the coupon need to be set up following the next steps.   

- Data acquisition set up: 

First, the strain gauge cables are connected to a 25 pin serial cable using an 

interface breakout board as shown in figure 43 and then plugged into the 

connection boards of the MGCplus data acquisition system. The extensometer 
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and the Instron 8803 test machine outputs are plugged directly into the 

connection board of the MGCplus.   

 
Fig. 43. 25 pin interface breakout with two strain gauges connected. 

- Placement of the coupon:  

To place the coupon in the jaws of the testing machine, first, it is important to 

remove the cable ties. Next, the coupon is aligned and held between the gaps of 

the upper jaw at the desired distance and then the upper jaw can be closed using 

the controller button. Note that the person holding the coupon must be the 

same pressing the button to avoid accidents. Subsequently, the load actuator 

must be set up to zero in order to compensate the weight of the jaw system and 

prevent any force from altering the coupon at the moment of closing the lower 

jaw. 

Once the load is set to zero the lower jaw is closed. 

- Securing the cables: 

Once the test coupon is held by the machine, the cables of the sensors are 

secured to the machine with a cable tie avoiding them from being accidentally 

pulled during the test. 

- Attaching the extensometer:  

The extensometer is placed in the coupon using the previously attached plates 

as shown in figure 44. 

 
Fig. 44.Coupon with extensometer set up in the instron 8803. 

These steps grant the precise acquisition of data as well as safety measures. 
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4.3.1. Graphical user interface (GUI) of the testing machine software 

The software used to control the testing machine is called WaveMaker. In this software, 

each test protocol is established and divided by blocks, in this case, the machine is 

controlled either by the displacement or by the strain from the strain gauge and each 

block contains either a displacement rate (speed) or a strain rate. In the user interface 

(UI) it is shown the values of the load, displacement and strain in real time, thus this 

values can be monitored while testing (see fig. 45).  

  
Fig. 45. Screenshot of the testing software WaveMaker. 

4.3.2. Loading protocols 

Due to the limited number of coupons, the loading protocols employed are dependent 

on this factor. One of the coupons is destined to a monotonic axial test, this leaves four 

coupons for the cyclic testing.  

The first protocol corresponds to a monotonic tensile test; the second, third and fourth 

protocols correspond to low-cycle fatigue tests using the companion method at strain 

amplitudes of ±5%, ±3% and ±1% respectively; and the fifth protocol consists of cycle 

testing using the multiple-step method going through strain amplitudes of ±0.5%, 

±0.75%, ±1%, ±2%, ±3%, ±4 and ±5%.  

It is important to ensure that the heat generated during the test does not significantly 

affect the results, therefore the test speed should not exceed a certain value. For the 

axial monotonic tensile test, the speed selected is the one proposed by Huang and Young 

[43] for ductile materials (see table 16). With the speeds defined, the loading protocol 

is established as shown in figure 46.  
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Fig. 46.Loading protocol scheme. First Protocol. 

 

Table 16. Loading Rates [43]. 

Strain % 
Loading 

rate 
(mm/min) 

̴0-0.15 0.05 

0.15-0.5 0.8 

0.5 Paused 100s 

0.5-2.5 0.8 

2.5 Paused 100s 

2.5-fracture 0.8 

 

 

For the rest of the tests, which are strain controlled, the strain rate used to minimize the 

effect of the temperature is 0.001/s. It is worth noticing that this strain rate is obtained 

evaluating the previous studies (see section 2.3).   

The second, third and fourth protocols consist of repeating cycles of tension and 

compression at a constant strain amplitude until the fracture of the coupon. The second 

protocol has a strain amplitude of ±5% strain, the third protocol has a strain amplitude 

of ±3% and the fourth protocol has a strain amplitude of ±1%. In fig. 47 a scheme of the 

protocols is shown.  

 

 
Fig. 47. Companion method loading protocols. 

The last protocol consists of step-wise increasing strain amplitude cycles with 10 cycles 

performed at each amplitude as seen in fig. 48.  
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Fig. 48. Fifth loading protocol. Multiple-step method. 

Once the loading protocol input is ready, the button “Run” is pressed in the software 

Wavemaker and the test begins. It is important, before running the test, that the catman 

software is ready to obtain all the data at the desired frequency.   
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5. EXPERIMENTAL RESULTS  

This chapter presents the result obtained during the test. The results are analysed and 

formerly, relevant information and properties like a cyclic strass-strain curve and 

Young’s modulus are extracted.  

5.1. Test results 

First, it is important to highlight that strain-controlled cyclic tests have never been done 

before in the Structural Technology Laboratory in the Department of Civil and 

Environmental Engineering at UPC, and the calibration needed for the testing machine 

to be able to be controlled by a strain gauge (which does not belong to the testing 

system), was a challenge for the technicians and the researchers involved in this 

experimental study.  

In this section, a brief description of the test development is presented followed by the 

test results. For an adequate representation of the results, stress-strain curves and data 

history charts are plotted.  

First test: Monotonic tensile 

The monotonic tensile test is a common test performed in the laboratory. In this case, 

the extensometer and strain gauges will reach their limits before fracture. Nevertheless, 

load and displacement data are measured by the testing machine throughout the whole 

test.  

The coupon behaviour vas monitored with a real-time load-displacement chart, and it 

showed the expected behaviour till the fracture (see fig. 53 and 54). In the following 

figures the data obtained during the test is plotted.  

In figure 49 and 50, the non-linear behaviour of stainless steel can be appreciated; 

nonetheless, a relatively linear behaviour is shown at the beginning. The material shows 

a considerable strain hardening and high ductility. The test has a peak load of 53kN 

(around 675 MPa of ultimate stress) and a load of 36kN at fracture (a stress of 458 MPa 

at rupture). 
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Fig. 49. Load-displacement curve of tensile test. Displacement obtained from the testing machine. 

 
Fig. 50. Load-displacement curve of tensile test. Displacement obtained from the extensometer until its 

limit. 

 
Fig. 51. Stress-strain curve of tensile test. The curve is plotted until the strain gauge fails. 
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Fig. 52. Stress-strain curve of tensile test with mean values of the strain gauges. 

The stress-strain curve shown in figure 52 consists of mean values from the two strain 

gauges plotted in figure 51 and will be used to obtain the Young´s Modulus (E) and the 

yield strength (𝜎0.2).  

In the following figures (fig. 53 and 54) the fracture of the coupon is appreciated, in 

figure 54 a comparison with another coupon is made in order to observe the 

elongation and the necking.  

 
Fig. 53. Fractured coupon. Monotonic tensile test. 

 
Fig. 54.Tested coupon in contrast with another coupon. 
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Second test: Cyclic companion ±5% 

As mention before, the second test consists of cycles at a constant strain amplitude of 

±5%. 

Once the coupon was placed in the Instron 8803 and ready to test, the test protocol was 

executed. A few seconds after the loading block started, the testing machine performed 

an abrupt tension load fracturing the coupon immediately resulting in a failed test (see 

fig.55).  

 
Fig. 55.Fractured Coupon from failed test. 

It was figured out that the error was due to a discrepancy between the strain value 

variation and the load variation, basically, if the load is ascending the strain gauge value 

must ascend too. If this is not the case (like in the failed test) it can be fixed by switching 

the +/- cables of the gauge. 

After this incident, the tests were rethought and it was decided that the fourth test 

would be discarded and only two tests will be performed at constant strain amplitude, 

at ±5% and ±3%.  

Considering the above, the second test has been tried again. This time the test started 

successfully and 5 cycles were completed until the strain gauge showed a value out of 

range.  

A strain value out of range normally means that the coupon fractured but, when 

extracting it, the coupon was unaltered to the naked eye and the strain gauges seem to 

be in good condition (see fig. 56)  

  
Fig. 56. Strain gauges still attached to the coupon after the second test. 
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It was speculated that the error in the strain gauge value was due to the adhesive being 

too fragile for cycles at a strain of that magnitude. Nonetheless, in the manufacturer’s 

strain gauges catalogue [40], it is shown that the YF strain gauge series has a fatigue limit 

of 100 cycles, therefore the reason why the strain gauge did not work remained 

uncertain. 

As the coupon didn’t fracture, the material is strengthened, so an attempt to continue 

the test using a two-component EA-2A adhesive was made. This adhesive takes longer 

to dry and an oven is needed. By the time the adhesive was dry, it was clear that the 

strain gauge was not making contact with the coupon and therefore the attempt was 

discarded (see fig. 57). This may be due to the long drying process and the thick and 

slippery characteristic of this adhesive.  

 
Fig. 57. Strain gauge attached with two component EA-2A adhesive. 

Despite this, the data from the 5 cycles were extracted and used in FE in this research 

project. The following results are obtained.  

Figure 58, shows the values of strain given by the strain gauge employed to control the 

test. As it can be seen, the strain kept a constant amplitude of ±5% and each cycle takes 

200 seconds corresponding to the 0,001/s strain rate. A total of 5 cycles were completed 

until the strain gauge failed.  

Figure 59 shows the data from both strain gauges as a sort of comparative data. 

Although the secondary gauge started showing values out of range at around 3.5%, it 

continued showing coherent values when returning to this same strain and therefore 

creating a gap. When comparing both curves, even though there is missing data, their 

behaviour is almost identical. It can also be noted that the strain at which the control 

strain gauge failed was around the same value as that of the secondary strain gauge. 
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Fig. 58.Strain history of control strain gauge. Companion method. ±5% strain amplitude.  

 
Fig. 59. Strain history of both strain gauges. Companion method. ±5% strain amplitude. 

Figure 60 and 61 shows the displacement applied to the coupon throughout the test. 

The data obtained from the extensometer is considered more accurate and the data 

obtained from the test machine is used for reference only.  

 
Fig. 60. Displacement history of the Instron test machine. Companion method. ±5% strain amplitude. 

 
Fig. 61. Displacement history of the extensometer. Companion method. ±5% strain amplitude. 

As it can be seen, not only the displacement deviates from the X axis, but also its 

amplitude increases with each cycle.  

In figure 62 and 63, a strong cyclic hardening is observed with the fifth cycle presenting 

a peak stress close to five times the first peak stress. Stabilisation has not been reached 

meaning it can be strengthened more. Another important observation is that the 

mechanical behaviour varies in tension and compression i.e. asymmetric behaviour; in 

compression, the peak stresses are higher than in tension.   
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Fig. 62. Stress history. Companion method. ±5% strain amplitude. 

 
Fig. 63. Strain-Stress curve. Companion method. ±5% strain amplitude. 

Figure 64 shows the difference between peak tensile stresses in each cycle. Although 

only 5 cycles were completed, the peak stresses have large differences from one cycle 

to another, indicating a considerable level of hardening.  

 
Fig. 64. Variation of peak stresses between cycles. Companion method. ±5% strain amplitude. 
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Third test: Cyclic companion ±3% 

Similar to the previous test, the third test was set up at a constant strain amplitude of 

±3%. After verifying that the load and the strain values were “compatible”, the test was 

started. The test machine performed 20 successful cycles until the strain gauge showed 

a value out of range.  

After extracting the coupon it was noticed that both the coupon and the strain gauge 

controlling the test were apparently in a good state, this means that the strain gauges 

are failing prematurely.  

In this case, in order to continue, strain gauges were attached again with the same 

adhesive (CN-Y) and 6 more cycles could be completed until the same issue occurred.  

In total, the coupon was subjected to 26 cycles at a strain amplitude of ±3% without 

fracturing.  

The results are divided into two parts; part 1 corresponds to the first 20 cycles and is 

exhibited in the charts in blue, and the part 2 corresponds to the followed 6 cycles and 

is represented in orange.  

As the third test is similar to the previous test, the results show the same behaviour.  

Figure 65, shows the strain kept constant at an amplitude of ±3% and it can be seen that 

each cycle takes 120 seconds corresponding to the 0,001/s strain rate. A total of 26 

cycles (20 in part 1 + 6 in part 2) were completed.  

 
Fig. 65. Strain history of control strain gauge (part 1 + part 2). Companion method. ±3% strain amplitude. 

Figure 66 shows the data from the secondary strain gauges. In part 1 the data does not 

correspond with the control gauge, this may be due to a bad attachment of the gauge. 

After the test, when extracting the protective coating, the secondary gauge was 

separated from the coupon, something that did not happen with the control gauge nor 

in the previous test. In part 2, the secondary strain gauge presents the same issue as the 

gauges in the previous test, but in this case, the missing data is larger. A comparison 

between strain gauges could not be made.  
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Fig. 66. Strain history of secondary strain gauge (part 1 + part 2). Companion method. ±3% strain 

amplitude. 

Figure 68 and 69 shows the displacement applied to the coupon throughout the test. As 

well as in the previous test, not only the displacement deviates from the X axis, but also 

its amplitude increases with each cycle. 

 
Fig. 67. Displacement history of the Instron test machine. Companion method. ±3% strain amplitude. 

 
Fig. 68. Displacement history of the extensometer. Companion method. ±3% strain amplitude. 

In figures 69 and 70, a strong cyclic hardening is observed; the last peak stress is 

considerably higher than the first peak stress. It is considered that the hysteresis loops 

reach stabilization. In this test, the asymmetric behaviour is also presented. 

In figure 70, in part 1, a change of slope from the previous test is observed when 

unloading from compression to tension. In part 2, this change of slope is not observed 

which implies that this behaviour could be an error from the test machine or the strain 

gauge. 
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Fig. 69. Stress history (part 1 + part 2). Companion method. ±3% strain amplitude. 

 
Fig. 70. Strain-Stress curve (part 1 + part 2). Companion method. ±3% strain amplitude. 

In figure 71, it can be seen that in the first cycles the peak stresses have large differences 

but are gradually reduced, after about 6 cycles the differences become fairly constant,  

and therefore considered stable. An unusual peak is observed between cycle 21 and 

cycle 22, probably due to the fact that the test is divided into two parts.  

  
Fig. 71. Variation of peak stresses between cycles. Companion method. ±3% strain amplitude. 

-1200
-1000

-800
-600
-400
-200

0
200
400
600
800

1000
1200

0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880 3120 3360

St
re

ss
 (

N
/m

m
2 )

Time (s)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

-5 -4 -3 -2 -1 0 1 2 3 4 5

St
re

ss
 (

N
/m

m
2 )

Strain (%)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

∆
σ

(N
/m

m
2 )

Cycle



68 
 

Fourth test: Cyclic companion ±1% 

As explained before, the fourth test was discarded due to the unexpected failure of one of 

the coupons. 

Fifth test: Cyclic multiple-step 

As mentioned before, the fifth test consists in a cyclic test using the multiple-step 

method, going through strain amplitudes of ±0.5%, ±0.75%, ±1%, ±2%, ±3%, ±4% and 

±5%.  

Considering the previous tests, the results of this test were somewhat better. 53 cycles 

were completed covering the strain amplitudes of ±0.5%, ±0.75%, ±1%, ±2% and ±3% 

completely and 3 cycles of ±4%. In agreement with the previous tests, the coupon did 

not fracture.   

The following results are obtained.  

Figure 72 shows the values of strain given by the strain gauge employed to control the 

test. As it can be seen, the test kept a constant 0,001/s strain rate while going through 

all the different strain amplitudes. The blocks of ±0.5%, ±0.75%, ±1%, ±2% and ±3% of 

amplitude were tested completely plus 3 cycles of ±4% amplitude.  

 
Fig. 72. Strain history of control strain gauge. Multiple-step method. 

Figure 73 shows the data from both strain gauges as a sort of comparative data. Both 

curves follow almost identical paths. The secondary strain gauge showed values out of 

range in the last three cycles similarly to the second test.  
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Fig. 73. Strain history of both strain gauges. Multiple-step method. 

Figure 74 and 75 show the displacement applied to the coupon throughout the test. The 

displacement deviates from the X axis and its amplitude increases at each cycle. 

 
Fig. 74. Displacement history of the Instron test machine. Multiple-step method. 

 
Fig. 75. Displacement history of the extensometer. Multiple-step method. 

In figure 76 and 77, a cyclic hardening varies at each amplitude. At strain amplitudes of 

±0.5%, ±0.75% and ±1% the cyclic hardening is minimum and the loops are stable 

starting from the second cycle. At ±2%, a considerable cyclic hardening and a clear 

stabilization through the cycles are observed. At  ±3%, the behaviour is comparable to 

the previous test. Strong cyclic hardening is observed and more plastic strain seems to 

be needed in order to reach stabilization. Insufficient data is obtained at  ±4%, but it is 

observed a stronger cyclic hardening at the first cycles. In this test, the asymmetric 

behaviour is also presented.  

In figure 77, the change of slope, observed in the last tests, has appeared again in the 

last block of cycles. This change of slope seems to be related to relatively high strain 

amplitudes and to the number of cycles.  
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Fig. 76. Stress history. Multiple-step method. 

 
Fig. 77. Stress-strain curve. Multiple-step method. 

Figure 78 shows the difference between peak tensile stresses in each cycle. As it can be 

seen, in the lower strain amplitudes (±0.5%, ±0.75% and ±1%), the difference in the peak 

stresses is very low and the behaviour remains stable starting from the second cycle. On 

the other hand, for ±2% and ±3%, the difference between peak stresses is higher and is 

reduced gradually each cycle.  
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Fig. 78. Variation of peak stresses between cycles. Multiple-step method. 

5.2. Results discussion 

First, it is important to highlight that the tests were affected by premature failure of the 

strain gauge and the cyclic tests were unable to reach the failure of the specimen. 

Nevertheless, general aspects of the tests are listed below.  

- It is observed that cyclic hardening, as well as the number of cycles needed to 

reach stabilization, increases with strain amplitude.  

- Differences between tension and compression stresses are present in each test; 

this means that the material has an asymmetric behaviour.  

- Displacement drift is observed in all cyclic tests, this may be due to cross-section 

area reduction and plastic deformation. 

-  It is observed that at constant strain amplitude, the displacement amplitude 

increases with each cycle.  

- An unexpected change of slope is observed at the end of each test. The reason 

for this behaviour is uncertain, but it is guessed that this may possibly be due to 

the testing machine or the strain gauge.  

- In the multiple-step test, “Masing” effect can be observed in the first 3 blocks 

(strain amplitudes of ±0.5%, ±0.75% and ±1%) this means that the hysteresis 

loops at different strain ranges coincide if they are plotted in a relative 

coordinate system (see fig. 79). 

 
Fig. 79. Relative hysteresis loops from the multiple-step test. Strain amplitudes of ±0.5%, ±0.75% and 

±1% 
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5.3. Cyclic stress-strain curve  

In order to construct the cyclic stress-strain curve (also known as skeleton curve), data 

pairs (𝜎, 휀) are obtained from half of a stable cycle at each strain amplitude. In this case, 

the data pairs will be extracted from the last cycle of each amplitude of the Multiple-

step method test. In figure 80 these data points (blue points) and the fitted curve 

following a two-stage model (black) are plotted along with the stress-strain curve 

obtained from the experimental monotonic tensile test (blue).  

 
Fig. 80. Comparison of cyclic and monotonic stress-strain curves. 

As shown, stainless steel exhibits a considerable level of cyclic hardening, as the strain 

amplitude increases, the stress rises to values much higher than that of the tensile test. 

5.4. Young’s modulus and proof stress  

The Young’s modulus is a material resistance to being deformed elastically when 

subjected to stress. Basically, it is defined as the ratio of tensile stress to tensile strain of 

the elastic branch of a material and it can be obtained from a monotonic tensile stress.  

In order to calculate Young’s modulus, it is important to take into account that initial 

experimental data sets are usually not representative due to machine-coupon 

settlement and should not be considered in the calculation.  

A Pearson correlation coefficient (𝑟𝑘) is obtained for groups of 15 experimental points, 

from point k to point k+14. Then a variation between these coefficients is calculated as: 

∆𝑟𝑘 = (𝑟𝑘 − 𝑟𝑘−1)/𝑟𝑘−1. The initial point of the set of representative points is the first 

one that fulfils the following conditions:∆𝑟𝑘 < 0.5%,   𝑟𝑘+1 < 0.5%,  and  ∆𝑟𝑘+2 < 0.5%.  

It is necessary to ensure that the quantity of points used is sufficient, but also 

guaranteeing that the points belong to the linear branch of the experimental data, 

therefore the last point of the set of representative points is the first, after the initial 
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point, that fulfils the following conditions: 𝑁° 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 ≥ 15, ∆𝜎 = 𝜎𝑗 − 𝜎𝑖 ≥ 60,

𝜎𝑗 ≤ min (𝜎𝑢/5 ; 125).  

Once the set of representative points is defined, Young’s modulus is determined by 

linear regression.   

The Young modulus obtained from the stress-strain data of the monotonic tensile test 

equals to 𝐸 = 196119 𝑁/𝑚𝑚².  

In this research project, the yield strength is defined as 0,2% proof stress (𝜎0.2) of the 

material. In order to obtain this stress, it is necessary to find the stress in which the 

material has a plastic strain of 0,2% with plastic strain defined as: 휀𝑝 = 휀 − 𝜎/𝐸, where 

E is the Young’s modulus. This can be better represented graphically as the intersection 

point between the stress-strain curve of the tested material and a line parallel to the 

Young’s modulus that passes through the point with zero stress and 0,2% strain. Figure 

81 shows the stress-strain chart along with the Young’s modulus slope and the parallel 

line used to find 𝜎0.2. 

 
Fig. 81. Graphical representation of the Young's Modulus and proof stress. 

The 0,2% proof stress obtained is 𝜎0.2 = 319 𝑁/𝑚𝑚². 

5.5. The Ramberg-Osgood parameters and Mirambell-Real two-stage model  

The Ramberg-Osgood and the two-stage model strain hardening coefficients (see 

section 2.1.5) were obtained (see Eq.(1) and (3)).  

휀 =
𝜎

𝐸
+ 0.002(

𝜎

𝜎0.2
)𝑛    𝑓𝑜𝑟 𝜎 ≤ 𝜎0.2 (1) 

휀 = 0.002 +
𝜎0.2

𝐸
+

𝜎 − 𝜎0.2

𝐸𝑦
+ 휀𝑢 ∗ (

𝜎 − 𝜎0.2

𝜎𝑢 − 𝜎0.2
)

𝑚

     𝑓𝑜𝑟 𝜎0.2 < 𝜎 ≤ 𝜎𝑢 
(3) 

The Young’s modulus and the 0,2% proof stress were found in the previous section, the 

tangent modulus is obtained analogously to Young’s modulus and the parameters n and 

m were calibrated to fit the experimental curve with the minimum error. The error is 

defined as the sum of the squares of the minimum distances between both functions, 
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taking into account not only the strain variable, but the stress variable as well (see Eq. 

(16)) [44].  

𝑒 = ∑ 𝑚𝑖𝑛𝑘∈𝐴 {√(
휀𝑒𝑥𝑝,𝑘 − 휀𝐸𝑞,𝑖

0.01
)

2

+ (
𝜎𝑘 − 𝜎𝑖

𝜎1
)

2

 }
𝑖∈𝐴

 (16) 

Table 17 gathers all the parameters obtained after fitting the experimental curve with 

the model. 

Table 17. Parameters for the two-stage model. 

𝐸 (𝑀𝑃𝑎) 𝐸0.2 (𝑀𝑃𝑎) 𝜎0.2 (𝑀𝑃𝑎) 𝑛 𝑚 

196119 18072 319 8 2.33 

 

Figure 82 shows the stress-strain curve using the Mirambell-Real two-stage model and 

in the bottom right, a comparison between the test data and the model is made.  

 
Fig. 82. Stress-strain curve, two-stage model. 

5.6. Combined isotropic/kinematic hardening model  

As it is mentioned in section 2.1.5, in order to simulate the cyclic behaviour of stainless 

steel a model that utilizes an isotropic and a kinematic component is needed. In order 

to understand and analyse the cyclic behaviour of stainless steel and be able to obtain 

the analytical expressions that define this model, it is necessary to obtain pairs of data 

points from the hysteresis loops. The procedure to obtain these points is described 

below.  
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Isotropic component  

The tabular data used in the isotropic component consist of a series of (𝜎𝑖
0, 휀𝑖

𝑝) data 

pairs. The first data points needed are the maximum tensile stress 𝜎𝑖
𝑡 and the maximum 

compressive stress in the elastic range 𝜎𝑖
𝑐  for each cycle as shown in the figure 7.  

In order to obtain the maximum tensile stress in each cycle, first, it is important to note 

that in the experimental data, the maximum tensile stress of a cycle does not coincide 

with the maximum plastic strain and the value of the strain corresponding to maximum 

stress varies in every cycle. Therefore, data pairs of maximum tensile stress and 

corresponding plastic strain are obtained for every cycle and a mean value of the plastic 

strains is calculated. Then, values of stresses at that mean plastic strain are calculated 

at each cycle by linear interpolation. These stresses will be used as maximum tensile 

stresses 𝜎𝑖
𝑡. 

The maximum compressive stress in the elastic range 𝜎𝑖
𝑐  is calculated similarly to the 

yield strength, but using the maximum tensile data pairs as the coordinates origin. A 

plastic strain of 0.2% is considered as the end of the elastic range. For a better 

understanding, figure 83 shows the graphical method for obtaining 𝜎𝑖
𝑐.  

 
Fig. 83. Example of obtaining the maximum compressive stress in the elastic range. 

After 𝜎𝑖
𝑡 and 𝜎𝑖

𝑐  are found, equation (5) is solved and the stresses for the tabular data 

(𝜎𝑖
0) are obtained.  

Regarding the strains values for the tabular data (휀𝑖
𝑝), equations (6) and (7) are used. 

These values represent the accumulated plastic strain that has occurred until the cycle 

i. 

𝜎𝑖
0 = (𝜎𝑖

𝑡 − 𝜎𝑖
𝑐)/2 (5) 

휀𝑖
𝑝 =

1

2
(4𝑖 − 3)∆휀𝑝 (6) 

∆휀𝑝 ≈ ∆휀 − 2𝜎1
𝑡/𝐸 (7) 
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Data pairs of (𝜎𝑖
0, 휀𝑖

𝑝
), were extracted from the constant strain amplitude test at ±3% 

and  ±5% and from the multiple-step method test at strain amplitudes of ±0.5%, ±0.75%, 

±1% , ±2% and ±3%. The extracted data are plotted (in colours) in figures 84 and 85.  

𝜎0 = 𝜎|0 + 𝑄∞(1 − 𝑒−𝑏𝜀𝑝
) (4) 

Using the exponential formulation described in section 2.1.5 (Eq. (4)), it is possible to 

obtain analytical parameters that fit the points above. As well as in previous calculations, 

the curve of the exponential formulation is fitted to the experimental data to obtain the 

parameter b. The error used to fit the data is analogous to the error used in the two-

stage model (see Eq. (15)).  

𝑒 = ∑ 𝑚𝑖𝑛𝑘∈𝐴 {√(
𝜎𝑒𝑥𝑝,𝑘 − 𝜎𝐸𝑞,𝑖

𝜎|0
)

2

+ (휀𝑘 − 휀𝑖)2 }
𝑖∈𝐴

 (17) 

The exponential curves are plotted (in black) along with the experimental data in figures 

84 and 85. The parameters are presented in the following table.  

 

Table 18. Parameters for the Isotropic component. 

Equation 𝜎0 = 𝜎|0 + 𝑄∞(1 − 𝑒−𝑏𝜀𝑝
) 

Method Amplitude 
Parameters 

𝜎|0 𝑄∞ 𝑏 

Companion 

method 

±3% 319 327 0.66 

±5% 319 156 3.14 

Multiple-step 

±0.5% 319 25 198.28 

±0.75% 319 24 269.61 

±1% 319 26 30.85 

±2% 319 82 6.00 

±3% 319 191 3.56 
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Fig. 84. Input data for Isotropic hardening component obtained from companion method tests at strain 

amplitudes of ±3% (left) and ±5% (right). 

 

 
Fig. 85. Input data for Isotropic hardening component obtained from the multiple-step method test. 
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As it can be seen in the results, the isotropic data shows a cyclic hardening that begins 

to be noticeable at an amplitude of ±2%. At amplitudes of ±0.5%, ±0.75% and ±1%, in 

general, hardening appears in the first cycle and practically no changes in stresses 

develop through the rest of the cycles; this explains the lower values of 𝑄∞ (low change 

in the size of the yield surface) and higher values of b (it reaches its maximum value with 

low plastic strain).  

When comparing the parameters between both methods at an amplitude ±3%, it can be 

noticed that the values differ from one another, this is due to the nature of each method. 

For the multiple-step method, only 10 cycles of data are obtained, this means that the 

curve could only reach a certain plastic strain and therefore the value of 𝑄∞ is limited 

by the stress reached at that last cycle; in the companion method, more plastic strain is 

developed and the stress reached is higher and the 𝑄∞ changes.  

Despite this discrepancy, it is later shown in the results (section 6.2) that for the first 5 

cycles, the numerical models using data for both methods exhibit a behaviour that 

agrees with the experimental data.  

It is worth mentioning that 𝜎|0 is defined by Nip et. al. [2] as 0.01% proof stress, however, 

these values seemed not to fit with the behaviour of the curves. It was later realized that 

a proof stress of 0.2% (yield strength) fits better the curves and show results that better 

agrees with the experimental data.  

Kinematic component  

The tabular data used as input of the kinematic hardening component consist of a series 

of (𝜎𝑖
0, 휀𝑖

𝑝) data pairs. These values of stress and plastic strain are obtained from the 

stabilized loop as shown in figure 8 and then shifted using Eq. (9). In order to do so, it is 

necessary to obtain the stress at zero plastic strain (𝜎1) of a stabilized loop analogously 

to the previous case considering a plastic strain of 0.2% as the end of the elastic range 

(see fig. 86). 

 
Fig. 86. Example of obtaining the stress at zero plastic strain. 

𝜎1 
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After obtaining 𝜎1, the rest of the data points are acquired and then shifted using Eq.(9). 

Next, the change of backstress α is calculated using Eq.(10). The pairs of data points are 

ploted (in colours) in figures 87 and 88.  

𝛼 =
𝐶𝑘

𝛾𝑘
(1 − 𝑒−𝛾𝜀𝑝

) + 𝛼1𝑒−𝛾𝜀𝑝
 (8) 

휀𝑖
𝑝 = 휀𝑖 −

𝜎𝑖

𝐸
− 휀𝑝

0 (9) 

𝛼𝑖 = 𝜎𝑖 − 𝜎𝑠 (10) 

For the companion method data, the hysteresis loops considered as stabilized are the 

tenth loop for ±3% and the last loop for ±5%. 

An important aspect to highlight is that, although the ±5% amplitude test was 

considered incomplete, the data was extracted knowing that the results could be 

conservative as the material could be hardened more. 

As well as for the isotropic component, with Eq.(8), it is possible to obtain analytical 

parameters that describe de curves above. The parameters are obtained by fitting the 

analytical curve with the experimental curve obtaining the minimum error. The error is 

defined by the following equation. 

𝑒 = ∑ 𝑚𝑖𝑛𝑘∈𝐴 {√(
𝛼𝑒𝑥𝑝,𝑘 − 𝛼𝐸𝑞,𝑖

𝛼1
)

2

+ (
휀𝑘 − 휀𝑖

0.01
)

2

 }
𝑖∈𝐴

 (16) 

 

The curves following the parameters obtained by fitting the curves are plotted in black 

along with the experimental data in figures 87 and 88. The proposed parameters are 

presented in table 19. 

 
Fig. 87. Input data for kinematic hardening component obtained from companion method tests at strain 

amplitudes of ±3% (left) and ±5% (right). 
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Fig. 88.Input data for kinematic hardening component obtained from the multiple-step method test. 
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Table 19. Parameters for the kinematic component. 

Equation 𝛼 =
𝐶𝑘

𝛾𝑘
(1 − 𝑒−𝛾𝜀𝑝

) + 𝛼1𝑒−𝛾𝜀𝑝
 

Method Amplitude 
Parameters 

𝐶𝑘 𝛾𝑘 

Companion 

method 

±3% 33396 162.96 

±5% 67381 206.08 

Multiple-step 

±0.5% 27736 312.57 

±0.75% 20649 258.73 

±1% 16500 193.28 

±2% 17148 143.84 

±3% 50006 186.04 

 

As it can be seen, the analytical curves fit the experimental curves almost perfectly. 

With all the data obtained above in figures 84, 85, 87 and 88 and in tables 18 and 19, it 

is possible to stablish the analytical model and perform numerical simulations.  
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6. NUMERICAL TEST SIMULATION  

In this chapter, a brief explanation of the material input in Abaqus is presented, followed 

by a sensitivity analysis and formerly, the numerical simulations in contrast with the 

experimental data are shown. Subsequently, analytical parameters are proposed and 

compared with previous studies. Finally, the results are discussed and exhibited in the 

last section of the chapter.  

6.1. Material properties  

In this section, a brief explanation about the material input used in Abaqus is presented.  

The density and the elastic properties are common for all the analyses. In table 20, the 

values used are exhibited.  

Table 20. Common material properties. 

Density 7.9x10-9 

Young’s Modulus 196119 

Poisson’s Ratio 0.3 

In order to define the plastic properties using the combined isotropic/kinematic model, 

the software Abaqus allawos the input of this model in two ways: by defining the 

analytical parameters or by introducing tabular data points obtained from tests. For a 

better understanding of this see figure 89. 

 
Fig. 89. Plasticity input flow chart 
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Tabular Data 

In order to define the tabular data, two steps are needed. 

First, the kinematic component is introduced. The data points used in this component 

are the experimental values exhibited in figures 87 and 88 but instead of using the values 

of change of backstress (𝛼), the stresses from which they are calculated is introduced 

(see Eq. (10)). 

𝛼𝑖 = 𝜎𝑖 − 𝜎𝑠 (10) 

The data is introduced following the procedure below. 

For AbaqusCAE (see fig. 90): 

Property module: material editor: MechanicalPlasticity Plastic: Hardening: 

Combined, Data type: Stabilized, Number of backstresses: n  

For Input file:  

*PLASTIC, HARDENING=COMBINED, DATA TYPE=STABILIZED, NUMBER 

BACKSTRESSES=n 

 
Fig. 90. Example of kinematic component material input as tabular data. 



84 
 

Second, the isotropic component is defined. In this case the data points used in this 

component are the experimental values exhibited in figures 84 and 85.  

The data is introduced following the procedure below. 

For AbaqusCAE (see fig. 91): 

Property module: material editor: MechanicalPlasticityPlastic: Hardening: 

Combined: SuboptionsCyclic Hardening 

For Input file:  

*CYCLIC HARDENING 

 
Fig. 91. Example of isotropic component material input as tabular data. 

Parameters 

As mentioned before, another option for introducing the analytical modes is by defining 

parameters. 

In order to define a combined hardening using parameters, similar steps are needed. 

First, the kinematic component is defined. The parameters used for the model are 

exhibited in table 19.  



85 
 

For AbaqusCAE (see fig. 92): 

Property module: material editor: Mechanical Plasticity Plastic: Hardening: Combined, 

Data type: Parameters, Number of backstresses: n 

For Input file:  

*PLASTIC, HARDENING=COMBINED, DATA TYPE=PARAMETERS, NUMBER 

BACKSTRESSES=n 

 
Fig. 92. Example of kinematic component material input using parameters. 

Second, the isotropic component is defined. The parameters used for the model are 

exhibited in table 18. 

For AbaqusCAE (see fig.93): 

Property module: material editor: MechanicalPlasticityPlastic: SuboptionsCyclic 

Hardening: toggle on Use parameters. 

For Input file:  

*CYCLIC HARDENING, PARAMETERS 

𝐶𝑘             𝛾𝑘 
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Fig. 93 Example of isotropic component material input using parameters. 

It is worth mentioning that, when defining the combines hardening model in Abaqus 

using experimental tabular data, the software automatically provides the kinematic 

parameters  Ck and γk by fitting the curve. In table 21, the kinematic parameters obtained 

in this study are compared with the ones provided by Abaqus.  

Table 21.Comparison between kinematic hardening parameters. 

Equation 𝛼 =
𝐶𝑘

𝛾𝑘
(1 − 𝑒−𝛾𝜀𝑝

) + 𝛼1𝑒−𝛾𝜀𝑝
 

Method Amplitude 

Parameters 

Abaqus Fitted curve 

𝐶𝑘 𝛾𝑘 𝐶𝑘 𝛾𝑘 

Companion 

method 

±3% 36697 173.78 33396 162.96 

±5% 71712 206.00 67381 206.08 

Multiple-step 

±0.5% 28966 312.57 27736 312.57 

±0.75% 21799 258.73 20649 258.73 

±1% 17817 193.28 16500 193.28 

±2% 19150 155.80 17148 143.84 

±3% 55096 199.45 50006 186.04 

As it can be seen, the parameters are very similar. 
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6.2. Sensitivity analysis 

In this section, parameters that define the cyclic plasticity of the material in Abaqus, are 

studied and compared. In order to do so, different models were executed with different 

plastic material characteristics.  

The first set of models will be comparing the influence of the parameter b from the 

isotropic component of the Chaboche model at different displacement amplitudes. In 

order to do so, the parameters of the kinematic component along with Q∞, are kept 

constant (see Eq. (4)).  

𝜎0 = 𝜎|0 + 𝑄∞(1 − 𝑒−𝑏𝜀𝑝
) (4) 

The second set of models will be comparing the influence of the parameters Ck and γk 

from the kinematic component of the model (see Eq. (8)), to do so, the parameters of 

the isotropic component are kept constant.  

𝛼 =
𝐶𝑘

𝛾𝑘
(1 − 𝑒−𝛾𝜀𝑝

) + 𝛼1𝑒−𝛾𝜀𝑝
 (8) 

For these analyses, the external action consists of a displacement applied at the end of 

the coupon (with the opposite end fixed) following three different periodic functions 

given in figure 94.  

 
Fig. 94. Displacement functions. 

To make the comparisons, stress history and stress-strain charts are employed since 

they adequately represent the mechanical behaviour of the material.  

Isotropic component parameter b 

As it is mentioned in section 2.1.5, the parameter b (see Eq. (4)) defines the rate at which 

the size of the yield surface changes as plastic straining develops. This means that the 

larger b is, the less plastic strain is needed in order to reach stabilization at a maximum 
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yield surface. To understand this behaviour several analyses were made using the 

parameters in table 22 at the mentioned displacement amplitudes. 

Table 22. Parameters for comparison of "b". 

 Isotropic component parameters Kinematic component parameters 

𝜎|0 (N/mm2) 𝑄∞ (N/mm2) 𝑏 𝐶𝑘(N/mm2) 𝛾𝑘 

210 500 

0.17 

110000 250 1.92 

2.71 

As it can be seen in the results shown in figure 95, the parameter b influences the 

stabilization; the curves with higher b shows great increment of stress in the first cycles. 
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Fig. 95. Stress-time and stress-strain charts for comparison of hardening parameter “b”. 

Kinematic component parameters 𝑪𝒌 and 𝜸𝒌 

𝐶𝑘 is the initial kinematic hardening modulus and  𝛾𝑘 determine the rate at which the 

kinematic hardening moduli decrease with increasing plastic deformation. This means 

that a higher 𝐶𝑘 translates to higher stresses at lower plastic strain; and a higher 𝛾𝑘 

means a sharper reduction of stress over plastic strain and lower stresses at higher 

plastic strain. As well as in the previous section, several analyses were made to 

understand this behaviour using the parameters in table 23.   

Table 23. Parameters for comparison of “Ck” and “γk”. 

 
Isotropic component 

parameters 

Kinematic component 

parameters 

𝜎|0 (N/mm2) 𝑄∞ (N/mm2) 𝑏 𝐶𝑘(N/mm2) 𝛾𝑘 

210 500 0.17 

110000 250 

110000 125 

55000 250 

 

As shown in the results in figure 96, reducing the parameter 𝛾𝑘 by half (orange curve) 

results in double stresses; in the stress-strain chart, the orange and blue curves have the 

same initial slope, but it can be seen that before reaching the strain amplitude, the blue 

curve is closer to an horizontal line than the orange curve. Reducing the parameter 𝐶𝑘 

by half (green curve) reduces the initial slope and, with the same  𝛾𝑘 , the stresses 

reached are less than those of the blue curve. 

-1500

-1000

-500

0

500

1000

1500

0 0.5 1

St
re

ss
 (

N
/m

m
2 )

Time

b=0.17

b=1.92

b=2.71
-1500

-1000

-500

0

500

1000

1500

-0.1 -0.05 0 0.05 0.1 0.15

St
re

ss
 (

N
/m

m
2 )

Strain

b=0.17

b=1.92

b=2.71

(e) Displacement amplitude of 1mm 



90 
 

 

 

 

 

Fig. 96. Stress-time and stress-strain charts for comparison of hardening parameters “Ck” and “γk”. 
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6.3. Correlation between FE models and experimental tests 

Once the material input is set, a displacement is applied aiming to obtain a specific strain 

and the numerical simulations of all the coupons tested were performed in Abaqus. The 

numerical simulations were performed using both tabular data and parameters as 

material input of the combined hardening model as explained in section 6.1.  

First, the numerical simulations using tabular data will be compared with their 

experimental counterparts using stress-strain charts and formerly, providing a table 

with ratios between the peak stresses (𝜎𝐹𝐸/𝜎𝑒𝑥𝑝) of experimental and simulated curves. 

The shape of the curves and the tension peak stresses will be taking into account to 

observe the similarities between the FE simulation and the experiment.  

Strain amplitude of ±5% 

 
Fig. 97. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±5% strain 

amplitude test (companion method). 

Table 24. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±5% strain 
amplitude (companion method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 681.8 430.1 1.585 

2 742.0 602.9 1.231 

3 776.8 691.3 1.124 

4 801.0 758.2 1.056 

5 817.3 819.1 0.998 

As it can be seen in figure 97 and table 24, the degree of roundedness agrees with the 

experimental behaviour, however the peak stresses at the first cycles does not 

completely agree with the experiment. 
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Strain amplitude of ±3%

 
Fig. 98. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±3% strain 

amplitude test (companion method). 
Table 25. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±3% strain 
amplitude (companion method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 551.2 431.8 1.277 

2 591.3 519.4 1.138 

3 611.3 565.5 1.081 

4 624.3 594.5 1.050 

5 633.9 615.8 1.029 

 

 
Fig. 99. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±3% strain 

amplitude test (multiple-step method). 
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Table 26. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±3% strain 
amplitude (multiple-step method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 670.8 571.0 1.175 

2 705.6 609.3 1.158 

3 716.9 638.5 1.123 

4 726.7 664.6 1.093 

5 735.9 689.6 1.067 

In figure 98 and table 25, a great agreement with the shape and peak stresses is shown, 

however the first cycles slightly differ from the experimental data. On the other hand, 

the simulation involving multiple-step method shows more differences with the 

experiment than the simulation involving companion method. 

Strain amplitude of ±2% 

 
Fig. 100. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±2% strain 

amplitude test (multiple-step method). 

Table 27. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±2% strain 
amplitude (multiple-step method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 454.4 443.3 1.025 

2 482.7 476.2 1.014 

3 491.7 494.5 0.994 

4 498.0 507.9 0.980 

5 502.8 518.2 0.970 

Table 27, show that the peak stresses are practically identical and figure 100 also shows 

good agreement between simulated and experimental tests. 
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Strain amplitude of ±1% 

 
Fig. 101. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±1% strain 

amplitude test (multiple-step method). 

Table 28. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±1% strain 
amplitude (multiple-step method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 401.5 410.8 0.977 

2 418.4 417.7 1.002 

3 420.7 421.0 0.999 

4 422.0 423.2 0.997 

5 422.8 424.7 0.995 

As it is shown in figure 101 and table 28, the similarity between the simulated model 

and the experimental behaviour is fairly high. 

  

Strain amplitude of ±0.75% 

 
Fig. 102. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±0.75% 

strain amplitude test (multiple-step method).  
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Table 29. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±0.75% strain 
amplitude (multiple-step method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 394.9 389.6 1.014 

2 411.2 398.2 1.033 

3 413.4 401.6 1.029 

4 414.2 403.3 1.027 

5 414.5 404.1 1.026 

Figure 102 and table 29 shows results similar to the previous case. 

Strain amplitude of ±0.5% 

 
Fig. 103. Experimental and FE simulated stress-strain hysteresis curves in the first 5 cycles of ±0.5% strain 

amplitude test (multiple-step method). 

Table 30. Ratio between simulated and experimental peak stresses for the first 5 cycles of ±0.75% strain 
amplitude (multiple-step method). 

Cycle 
FE model 

peak stress 
(N/mm2) 

Experiment 
peak stress 

(N/mm2) 
𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 

1 401.3 369.9 1.085 

2 415.1 382.3 1.086 

3 414.8 383.2 1.082 

4 413.6 383.1 1.080 

5 412.3 382.5 1.078 
 

In figure 103 and table 30 it can be seen, although the simulation describes the general 

behaviour, its agreement with the experiment is not as good as in previous cases.  
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After determining that the FE models agree with the experimental tests, the same 

analyses were executed, this time using the parameters exhibited in tables 18 and 19. 

The results are exhibited in figures 104 and 105. 

 
Fig. 104. FE simulated stress-strain hysteresis curves using tabular data and parameters. Data obtained 

from companion method tests. 
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Fig. 105. FE simulated stress-strain hysteresis curves using tabular data and parameters. Data obtained 
from multiple-step method tests. Additionally Fig. 105 (d) shows the experimental curve. 

As shown in figures 104 and 105, The hysteresis loops obtained from a material input 

using tabular data and parameters are practically identical. This way the parameters are 

validated and in table 31, the parameters proposed for further research are shown.  

Table 31. Proposed parameter values. 

Steel 
Grade 

Young’s 
Modulus 
(N/mm2) 

Yield 
Strength 
(N/mm2) 

Amplitude 
(%) 

Combined hardening parameters 

𝜎|0 
(N/mm2) 

𝑄∞ 
(N/mm2) 

b 
𝐶𝑘 

(N/mm2) 
𝛾𝑘 

EN 
1.4301 

 
196119 319 

±0.5% 319 25 198.28 27736 312.57 

±0.75% 319 24 269.61 20649 258.73 

±1% 319 26 30.85 16500 193.28 

±2% 319 82 6 17148 143.84 

±3% 319 327 0.66 33396 162.96 

±5% 319 156 3.14 67381 206.08 

 

It is worth mentioning that the parameters for the strain amplitude of ±3% are the ones 

obtained from the companion method test because the model exhibited better 

agreement with the experimental data than that of the multiple-step method. 

It should be noted that the parameters tend to vary with each type of coupon even at 

the same strain amplitude.  

The sensitivity analysis in section 6.2, not only helps to establish the criteria to round 

and display the values, but also serves as a base point to perform comparisons between 

different sets of values.  

The values in table 31 are compared with the values obtained in previous studies that 

are shown in table 3.  
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In general, the parameters have the same order of magnitude with some exceptions in 

the isotropic hardening parameters (𝑄∞ and b). This may be due to the fact that the data 

is extracted from only 10 cycles and not enough accumulated plastic strain has been 

developed to construct the complete exponential curve. Nevertheless, this affect the 

simulation when a higher number of cycles is applied to the specimen. 

6.4. Results discussion 

In the previous section, results are shown from figure 94 to figure 100. In general, the 

obtained FE models are in good agreement with the experimental results, and in tables 

23 to 29, the similarity between the FE models and the experiments it is quantified by 

calculating the ratio 𝜎𝐹𝐸/𝜎𝑒𝑥𝑝 for each cycle. It is noted that the models that better fits 

their experimental counterparts are the models corresponding to strain amplitudes of 

±2% and ±1% (fig. 97 and fig. 98 respectively).  

At lower strains, the numerical models results are very sensitive to the parameter 𝜎|0 

from the isotropic component. This value takes into account the linear range of the 

material behaviour and, for stainless steel, its effect is more variable. A more detailed 

study about the effect of this parameter is proposed for future research.  

Al higher strains, the degree of roundedness and the shape of the curve is simulated 

successfully, nonetheless, the peak stresses ratio shows larger discrepancies.  
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7. CONCLUSIONS AND RECOMMENDATIONS  

In this chapter, final conclusions regarding the experimental tests and its comparison 

with the numerical simulations are presented. Subsequently, recommendations for 

future research are given. 

7.1. Conclusions  

In order to introduce stainless steel in earthquake-resistant structures, it is necessary to 

comprehend its cyclic plasticity when subjected to a small number of large 

displacements. In order to accomplish this, an extensive study considering both 

experimental investigations and numerical modelling is necessary. 

For this reason, the main objective of this work consisted of understanding the cyclic 

behaviour and low-cycle fatigue of austenitic stainless steel by performing experimental 

tests, and identifying an analytical model that adequately simulates its behaviour. The 

material studied was 1.4301 austenitic stainless steel, which was subjected to 

experimental tests performed in the Structural Technology Laboratory in the 

Department of Civil and Environmental Engineering at UPC.  

After a literature review, it was observed that a combined Isotropic/kinematic hardening 

model known as Chaboche model was the best suited for simulating the cyclic plasticity 

of non-linear materials such as stainless steels. 

The tests performed were low-cycle fatigue tests using companion method and 

multiple-step method. Two tests were executed at strain amplitude of ±5% and ±3% 

using the companion method and one test was executed using multiple-step method 

going through strain amplitudes of ±0.5%, ±0.75%, ±1%, ±2%, ±3%, ±4. Also, a monotonic 

axial tensile test was made in order to obtain general properties of the material. The 

development of these test is presented in chapter 4 and their results in chapter 5. 

As a conclusion regarding the tests, first, it is worth mentioning that the cyclic tests were 

complex, and instrumentation is an important aspect to take into account and can be 

determinant to the correct development of the cyclic tests. Second, in chapter 5, the 

results obtained were, in general, satisfactory; although the obtained data was affected 

by premature failure of the strain gauge. Regarding the mechanical behaviour, stainless 

steel showed a considerable level of cyclic hardening that increases with strain 

amplitude and as well as an asymmetric behaviour. It was also observed that at constant 

strain amplitude, the displacement amplitude increases with each cycle and also 

deviates from the axis.  

In addition to the experimental tests, numerical finite element models were necessary 

to adequately fulfil the objectives of this study, these models were performed using the 

general-purpose Software Abaqus. Before executing the numerical models, a 

convergence study was employed in order to acquire the finite element best suited for 

the analyses.  
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With the experimental results, it was possible to extract necessary data to define an 

analytical model and simulate the material using Abaqus. The FE models were executed 

and the results are shown in chapter 6. It was determined that the models were in good 

agreement with the experimental results and formerly the analytical parameters that 

simulate the material behaviour were proposed. With this parameters (see table 31), 

further researchers will be able to perform numerical simulations of a similar material 

without the need to perform tests.  

Table31. Proposed parameter values. 

Steel 
Grade 

Young’s 
Modulus 
(N/mm2) 

Yield 
Strength 
(N/mm2) 

Amplitude 
(%) 

Combined hardening parameters 

𝜎|0 
(N/mm2) 

𝑄∞ 
(N/mm2) 

b 
𝐶𝑘 

(N/mm2) 
𝛾𝑘 

EN 
1.4301 

 
196119 319 

±0.5% 319 25 198.28 27736 312.57 

±0.75% 319 24 269.61 20649 258.73 

±1% 319 26 30.85 16500 193.28 

±2% 319 82 6 17148 143.84 

±3% 319 327 0.66 33396 162.96 

±5% 319 156 3.14 67381 206.08 

It is worth noticing that in order to correctly predict the material behaviour, it is 

necessary to anticipate the strain range in the analysis and use the parameters 

corresponding to that anticipated strain range.  

In the next section, general recommendations are presented.  

7.2. Recommendations for future research  

Now as this line of research has taken its first steps in the UPC, it is highly recommended 

that the tests are repeated with larger number of coupons in order to expand the 

currently limited data about the cyclic plasticity and low-cycle fatigue of austenitic 

stainless steel.  

It is worth to take into account different types of coupons with different material like 

flat coupon of cold formed stainless steel, and also perform both axial and bending low-

fatigue tests.  

An additional suggestion is regarding the instrumentation. The devices used in the 

experimental test must be selected with great care, especially the strain gauges. It is 

important to employ post yield strain gauges that are able to resist fatigue at strain 

amplitudes of around ±7%.  

It is highly recommended that the companion method is used to obtain representative 

data of the cyclic behaviour of stainless steel and to adequately obtain data for the 

analytical models.  
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