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Abstract

In this Thesis we face the creation of a new methodology to modeling the
Fluid-Structure Interaction for submerged solids subjected to a shockwave. In
this work we introduce a new hybrid analytical-numerical approach combining
response-functions-based ideology for modeling the fluid and a Finite Element
Method for modeling the solid.

Although the outer shape of the solid has to be circular, within the frame-
work of the response function based method we have been able to develop a
methodology for dealing with any inner configuration, both in geometry and
materials. This kind of problems are of considerable industrial interest, be-
cause they represent a wide range of application both in naval architecture
(submarines), subsea pipeline engineering and in general off-shore engineering.

With this new methodology we can provide accurate solutions for simple
geometries with far less computational cost than with regular FSI methodolo-
gies, enabling a much faster pre-dimensioning of the solution for then being
computed with regular FSI methodologies or for creating benchmarks for com-
paring other methodologies.
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Chapter 1

Introduction

1.1 Motivation of the Problem

Nowadays behavior of underwater structures under an explosion are one the major

concerns during their design for a wide range of applications. It is a major concern

for instance in some especial cases in naval engineering (submarines are the main

example in this field) for evident reasons but also to ensure the resistance of strategic

pipelines like oil and gas pipelines off-shore structures in case of an accident or even

modern submarine communication cables.

All this structures have as common treat that they can be simplified by an outer

cylindrical shape. Nowadays full FSI studies using regular methods like FEM need a

lot of computational time making them slow and inefficient in early stages of design.

These methods also need a bench of validation tests while developed in order to ensure

its accuracy.

So the present work borns as way to enable classic pseudo-analytic methods using

Fourier decomposition to couple with more modern FEM methods for the solid. This

combination should bring best of the two worlds together (but also some of their

limitations) allowing a much lower computational cost and therefore doing the pre-

dimensioning much faster and agile.

The proposed method should provide accurate enough solutions so that they can

be used as reference solutions for validation cases.
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1. Introduction

(a) Windmill Farm (b) Submarine

(c) Off-shore structure (d) Subsea pipeline

Figure 1.1: Examples of applications

1.2 Goals and Layout

The goals of the present work are:

• Couple Pseudo-Analytic fluid models with FEM solid modes

• Validate the results obtained with classic methods based on Reissner-Mindlin

theory.

• Compute more complex geometries and analyze the results

• Import more complex geometries from commercial pre-processor

• Post-proccess results in order to obtain stresses

2



1.3. Problem description

1.3 Problem description

We are going to solve the effect of a shockwave inside an inviscid fluid, linearly com-

pressible fluid affecting a plane stress/plane strain solid modeled with linear elasticity

and small deformations. The only limitation in the solid model is that the outer shape

must be circular.

Figure 1.2 represents the scheme of the problem to be solved with all the input

parameters, and system coordinates.

r0

r

Θ

shock wave:

pΑ, Λ

R0

v

u

w

fluid:

solid:

Ρf , cf

Ρs, E, Ν

Figure 1.2: Problem Definition
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Chapter 2

Modelling the Fluid

2.1 Hypothesis

In the present work some simplifications about the fluid behavior have been done.

In particular the fluid has been supposed to be linearly compressible so that the

variations in the fluid volume are directly proportional to the variations in pressure.

This fact links to the second assumption that has been made. The shockwave does

not produce cavitation. Although cavitation is a major engineering concern in the

field when produced. This model does not take into consideration effects induced by

cavitation, so when very low pressures are observed other methodologies should be

used in order to take into consideration this effect.

The fluid has also supposed to be inviscid, so that no energy dissipation is made.

This means that the energy condensed in the shock-wave fronts remains constant

in time, and that no dissipation is carried in the fluid. Another assumption related

to the lack of dissipation is that all properties and formulations are supposed to be

independent of the temperature.

The fluid is also supposed to be irrotational. This means that do not exist any

discontinuity due to the vortices, and therefore we can write the velocity field as the

gradient of a potential function.

The showcase appearing in the fluid is supposed to be cylindrical (circular in the

2D simplification), following a step-exponential law with decay λ.

5



2. Modelling the Fluid

2.2 Mathematical Formulation

Under the previous considerations we can write the wave equation governing the fluid

as:

∇2φ =
1

c2
f

∂2φ

∂t2
(2.1)

So it can be re-written in adimensional formulation as:

∇2φ̂ =
∂2φ̂

∂t̂2
(2.2)

The total pressure at any point can be written as the combination of 3 components.

The component due to the incident wave, the component due to the diffracted wave

and the component due to the radiated wave, p0, pd and pr respectively.

p = p0 + pd + pr (2.3)

In adimensional formulation:

p̂ = p̂0 + p̂d + p̂r (2.4)

And the total fluid potential can be written in the same way.

φ = φ0 + φd + φr (2.5)

And once more we can write down the expression in adimensional formulation

φ̂ = φ̂0 + φ̂d + φ̂r (2.6)

If we couple the fluid displacement and the solid displacement at the boundary,

we can set two boundary conditions. First one, is the no void is created between the

solid and fluid, so that, the transmission conditions is:

vfluid · n̂fluid = vsolid · n̂solid (2.7)

We know that the the incident a the difracted waves, create no normal velocity on

the solid boundary, so that.

∂φ̂0

∂r
= −∂φ̂d

∂r
on r̂ = 1 (2.8)

As the outer surface is a circle, using the previous equation 2.8, the velocity poten-

tial definition and the radial displacement of the solid, working in polar coordinates,

we can write it as:
∂φ̂r
∂r

=
∂ŵ

∂t
on r̂ = 1 (2.9)
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2.3. Shockwave

2.3 Shockwave

In this work we have supposed the shockwave to be cylindrical. In fact this is a simpli-

fication for the study in two dimension from the general case of a spherical shockwave

in 3D. In (Iakovlev, 2006, Appendix B,) the author obtains the 2D expression for the

shockwave, that is expressed as:

φ0 = −λpα(R0 − r0)

ρfR
e−

(t−c−1
f

(R−(R0−r0)))
λ H(t− c−1

f (R− (R0 − r0))) (2.10)

and,

p0 = −pα(R0 − r0)

R
e−

(t−c−1
f

(R−(R0−r0)))
λ H(t− c−1

f (R− (R0 − r0))) (2.11)

where

R =
√
R2

0 + r2 − 2R0r cos θ (2.12)

2.4 Diffracted and Radiated wave

As we can see in Iakovlev (2008a) in order to obtain the diffraction and radiation

pressure, we can apply the Laplace transform time-wise to the equation 2.2 in radial

coordinates, and we obtain:

∂2Φ̂

∂r2
+

1

r

∂Φ̂

∂r
+

1

r2

∂2Φ̂

∂θ2
− s2Φ̂ = 0 (2.13)

Where Φ̂ is the Laplace transform of φ̂, and s is the transform variable. Then we use

separation on the spatial variables to obtain the general solution of 2.13 imposing the

zero condition on r →∞. This general solution can be written as.

Φ̂ = AnKn(rs) cosnθ (2.14)

Where Kn is the modified Bessel function of the second kind of order n and An is an

arbitrary function of s. If we expand the normal velocity and the normal displacement

in series, we can write them as:

∂φ̂0

∂r

∣∣∣∣∣
r=1

=
∞∑
n=0

bn(t) cosnθ (2.15)

7



2. Modelling the Fluid

and

w =
∞∑
n=0

wn(t) cosnθ (2.16)

Now imposing the boundary conditions we can write the Laplace transform of the

harmonics of the unknown potentials as:

Φ̂dn = BnΞn cosnθ (2.17)

Φ̂rn = sWnΞn cosnθ (2.18)

Where Bn andWN are the Laplace transform of the bn and wn coefficients respectively,

and Ξn is the Laplace transform of what we will call the response function of the

problem, ξn, and is defined as:

Ξn(r̂, s) = −Kn(r̂s)

sK ′n(s)
(2.19)

If we evaluate the response function at the boundary (r̂ = 1), we can write it as:

Ψn(s) = − Kn(s)

sK ′n(s)
(2.20)

The response functions represents the response of the external fluid to the motion of

the solid. As we can see, they are independent of the solid properties, and do only

depend on the problem geometry. This will be the key of our analytical approach.

Once we obtain the response functions for any given geometry, we can use them to

solve any material configuration at any time step. This makes this approach very

interesting in terms of computational efficiency. The response functions ξn represents

the volume response functions, where we relate the displacement in the solid with the

effect anywhere in the fluid. Meanwhile the ψn response function is the restriction

over the boundary and is the one to be used when coupling the solid deformation and

the effect on the fluid.

We must remember that pressure p and potential φ are related, and we can write

this relation as

p = −ρf
∂φ

∂t
⇒ p̂ = −∂φ̂

∂t
(2.21)

Using Fourier decomposition on the pressure we can write the whole formulation for

the pressure as:

p̂d =
∞∑
n=0

p̂dn cosnθ (2.22)

8



2.4. Diffracted and Radiated wave

p̂r =
∞∑
n=0

p̂rn cosnθ (2.23)

p̂0 =
∞∑
n=0

p̂0n cosnθ (2.24)

p̂ =
∞∑
n=0

p̂n cosnθ (2.25)

And total pressure harmonics p̂n can be written as:

p̂n = p̂0n + p̂dn + p̂rn (2.26)

Using some Laplace transform related theorems, the diffraction and radiation terms

can be written as

p̂dn = − 1√
r
bn(t̂)−

∫ t̂

0

bn(η)
dξn
dη

(r̂, t̂− η)dη (2.27)

and

p̂rn =

∫ t̂

0

d2wn(η)

dη2
ξn(r̂, t̂− η)dη (2.28)

As we are interested in the interaction with the solid, we can bound the computa-

tions on the outer edge of the solid (r̂ = 1) so that, as we have defined ψ(t̂) = ξn(1, t̂)

p̂rn =

∫ t̂

0

d2wn(η)

dη2
ψn(t̂− η)dη (2.29)

Using integration by parts we can write equation 2.29 in a different form, using

velocities instead of accelerations, and the response function first time derivative.

p̂rn =

[
dwn(η)

dη
ψn(t̂− η)

]t̂
0

+

∫ t̂

0

dwn(η)

dη

ψn(t̂− η)

dη
dη (2.30)

Changing notation as df
dt

= ḟ , and using ψ(0) = 1 we can write it as:

prn = ẇn(t̂) +

∫ t̂

0

ẇn(η)ψ̇n(t̂− η)dη (2.31)

And as p0 is known from our shockwave then we can relate the global pressure

harmonics and the harmonics of the displacement of the outer boundary of our solid.

We must point out that not only p0 is known, pd does only depend on the response

functions and the incident shockwave, so that they are independent on the solid

displacements and are fixed for a given geometry.

9



2. Modelling the Fluid

We can use this fact to compute the shockwave for any given geometry (incident

and diffracted values) and the only term that will change depending on our solid

properties and behavior is p̂rn .

10



Chapter 3

Modelling the Solid

3.1 Hypothesis

In the present work some simplifications about the solid behavior have been made

also. They are common simplifications in structural dynamics and perform very well

inside their field of application, enabling a much lower computational cost. It is left

for further work to deal with more general assumptions.

The first assumption is that we can reduce our study to a 2D study omitting

the third dimension. This is due either because the solid is very thin and has no

actions outside its middle plane (plane stress) or either the solid is extremely long

and deformations in the third directions are 0 due to the symmetry (plane strain).

The second assumption that has been made is that the deformed and the original

geometry are almost the same, so the deformations are small.

The third assumption that has been made is that each material that constitute

the solid is homogenous and isotropic. Its properties are exactly the same all over

the material and in any direction.

The fourth assumption that has been made is that the material behaves as a

perfectly elastic material where the stresses are proportional to the strains.

And at last, it has also been assumed Rayleigh type dumping.

11



3. Modelling the Solid

3.2 Governing equations

Starting from the continuum mechanics equations, the first equation that will describe

the solid behavior is the momentum conservation.

∇ · σ + b = ρ
d2u

dt2
(3.1)

from the small deformations assumption we define the strain tensor as:

ε = ∇su (3.2)

The material is also assumed to be linearly elastic so for a given elastic fourth order

tensor C we can write the stress tensor as function of the strain tensor.

σ = C : ε (3.3)

As the material is isotropic, we can write the C constitutive tensor as:

C = λ1⊗ 1 + 2µI (3.4)

where 1 is the identity matrix and:

Iijkl =
1

2
(δikδjl + δilδjk)

And we can relate the λ and µ coefficients with the more common in engineering

Young Modulus (E ) and Poisson coefficient (ν).

λ =
νE

(1 + ν)(1− 2ν)
(3.5)

µ =
E

2(1 + ν)
(3.6)

We must stress out also that the sound propagation speed in the solid (cs)can be

related to the Young Modulus (E), density (ρs) and the Poisson coefficient (ν) by:

cs =

√
E

ρs(1− ν2)
(3.7)

As we are under plane stress/plane strain simplifications, we can simplify the both

the strain and stress tensors to three component vectors:

12



3.3. Finite Element Method Scheme

ε =

 εxx

εyy

γxy



σ =

 σxx

σyy

σxy


And we can relate them using a constitutive matrix D that depends on if we are

under Plane Stress / Plane Strain assumptions.

Plane Stress:

D =


E

1−ν2
νE

1−ν2 0
νE

1−ν2
E

1−ν2 0

0 0 E
2(1+ν)

 (3.8)

Plane Strain:

D =


E(1−ν)

(1−2ν)(1+ν)
νE

(1−2ν)(1+ν)
0

νE
(1−2ν)(1+ν)

E(1−ν)
(1−2ν)(1+ν)

0

0 0 E
2(1+ν)

 (3.9)

And we can write the stress-strain relation as:

σ = Dε (3.10)

3.3 Finite Element Method Scheme

For modeling the solid, we have used the Finite Element Method. It is not the

intention of the present work to dive inside a so well known method with such an

extense bibliography available. We will focus on the very basics and the main ideas.

Further information can be found in Oñate (2004).

The key of this method is to discretize our domain into small portions, that will

be called elements. so that inside each element the value of our displacement will be

given by interpolation of the value on the nodes.

We call nodes to the base points of our discretization that are going to define our

approximation. We are going to choose shape functions so that the shape function

Ni has value 1 on node i, and 0 on the other nodes. We can write it as:

Ni(xj) =

{
1 i = j

0 i 6= j
(3.11)

13



3. Modelling the Solid

We can approximate our displacement field as :

u ≈
n∑
i=1

Ni(x)ui (3.12)

When computing, our starting point is the weak form of the equilibrium equation,

also known as Virtual Work Principle.∫
Ω

δεTσdΩ +

∫
Ω

δuTρ
d2u

dt2
dΩ =

∫
Ω

δuT bdΩ +

∫
∂Ω

δuTpdΓ (3.13)

Where δu is the virtual displacement field imposed to body, and δε is the strain field

generated by it.

We define the components of the strain vector as:

εxx =
∂ux

∂x
(3.14)

εyy =
∂uy

∂y
(3.15)

γxy =
∂ux

∂y
+
∂uy

∂x
(3.16)

As we are approximating the displacement field with the shape functions, we can

rewrite the strain field as a function of them.

εxx =
n∑
i=1

∂Ni

∂x
uxi (3.17)

εyy =
n∑
i=1

∂Ni

∂y
uyi (3.18)

γxy =
n∑
i=1

∂Ni

∂y
uxi +

n∑
i=1

∂Ni

∂x
uyi (3.19)

(3.20)

So we can write both fields in a matricial way:

u =

(
ux

uy

)
=

n∑
i=1

(
Ni 0

0 Ni

)(
uxi

uyi

)
(3.21)

and

ε =

 εxx

εyy

γxy

 =
n∑
i=1


∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

( uxi

uyi

)
(3.22)
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3.3. Finite Element Method Scheme

We can rearrange the terms of the sum in a single matrix product

u =

(
N1 0 N2 0 · · · Nn 0

0 N1 0 N2 · · · 0 Nn

)


ux1

uy1

ux2
...

uxn

uyn


(3.23)

So that,

u = NU (3.24)

and

ε =


∂N1

∂x
0 ∂N2

∂x
0 · · · ∂Nn

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
· · · 0 ∂Nn

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
· · · ∂Nn

∂y
∂Nn
∂x





ux1

uy1

ux2
...

uxn

uyn


(3.25)

Therefore,

ε = BU (3.26)

So we can write the weak form as:∫
Ω

δUTBTDBUdΩ +

∫
Ω

δUTρNTN
d2U

dt2
dΩ =

∫
Ω

δUTNT bdΩ +

∫
∂Ω

δUTNTpdΓ

(3.27)

as we suppose there are no other forces than the impact of the shockwave, we can

rewrite the whole equation as:

δUT

∫
Ω

BTDBdΩ︸ ︷︷ ︸
K

U +

∫
Ω

ρNTNdΩ︸ ︷︷ ︸
M

Ü

 = δUT

∫
Ω

NT bdΩ︸ ︷︷ ︸
0

+

∫
∂Ω

NTpdΓ︸ ︷︷ ︸
F


(3.28)

So that we can write the discrete version of the momentum conservation equation

as:

MÜ +KU = F (3.29)
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3. Modelling the Solid

We add a dissipation term,

MÜ + CU̇ +KU = F (3.30)

As we have pointed out, this new added dumping term is supposed to be follow a

Rayleigh decomposition, so that:

C = c1M + c2K (3.31)

We have to stress out that we are not going to build the whole matrix N or

B, nor we are going to compute the integrals analytically. We are going to use

numerical integration and ensamble K and M matrices directly using the contribution

of each element, knowing that on each element only the nodes included in it have a

contribution on K or M.

3.4 Actions over the solid

Due to the nature of our actions, we are going to neglect the body forces distributed

all over the solid, and also the hydrostatic pressure of the fluid surrounding the body.

As we are in small deformations and linear elasticity theory, we can focus only on the

variations with respect to the steady state. So that, for instance, the flotation of the

solid is not checked, and is assumed.

In our work we have supposed the solid to be evacuated, so there is no inner fluid

and therefore no inner pressure. Then, the effect of the shockwave over the solid can

be reduced to a total pressure distribution all over the outer boundary.

As we will see later on, the total pressure will be defined in the outer nodes

of our solid, so we must interpolate the pressure over the boundary to obtain an

approximated pressure distribution. Then ir order to reduce it to the effect over the

outer nodes, we must integrate it over the element outer boundary.

This is achieved supposing linear interpolation. For a given element face that

connects nodes a and b, we have its length lab and its outward unitary normal nab,

we can write the contribution over these nodes as:

F ab
a = nablab

(pa
3

+
pb
6

)
(3.32)

F ab
b = nablab

(pb
3

+
pa
6

)
(3.33)

So in order to compute the independent term, we just have to sum the contribution

of all the faces to the nodes that are forming them.
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3.5. Time integration

3.5 Time integration

From now on we are going to denote Un as the displacements on the nodes on instant

n, and we are supposing a constant time step discretization ∆t.

For the time integration we are going to use the Newmark method. This method

is based in approximating both first and second derivatives in time as a function of

the value and previos time steps values.

Starting from:

Un+1 = Un + ∆tU̇n +
∆t2

2

(
(1− 2β) Ün + 2βÜn+1

)
(3.34)

U̇n+1 = U̇n + ∆t
(

(1− γ) Ün + γÜn+1

)
(3.35)

We get the expression of Ün+1 and U̇n+1

Ün+1 =
1

β∆t2

(
Un+1 − Un −∆tU̇n

)
−
(

1

2β
− 1

)
Ün (3.36)

U̇n + 1 =
γ

β∆t
(Un+1 − Un)−

(
γ

β
− 1

)
U̇n −∆t

(
γ

2β
− 1

)
Ün (3.37)

If we substitute it in equation 3.30 we obtain:

KUn+1 +
γ

β∆t
CUn+1 +

1

β∆t2
MUn+1 = Fn+1+

+C

(
1

2β∆t
Un +

(
γ

2β
− 1

)
U̇n +

∆t

2

(
γ

2β
− 2

)
Ün

)
+M

(
1

2β∆t2
Un +

1

2β∆t
U̇n +

(
1

4β
− 1

)
Ün

) (3.38)

Defining:

K∗ = K +
γ

β∆t
C +

1

β∆t2
M (3.39)

F ∗n+1 = Fn+1 + C

(
1

2β∆t
Un +

(
γ

2β
− 1

)
U̇n +

∆t

2

(
γ

2β
− 2

)
Ün

)
+

+M

(
1

2β∆t2
Un +

1

2β∆t
U̇n +

(
1

4β
− 1

)) (3.40)

So we can write the equation 3.38 just as:

K∗Un+1 = F ∗n+1 (3.41)

And from Un+1, Un, U̇n, Ün we can reconstruct and obtain U̇n+1 and Ün+1.
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Chapter 4

Coupling the Fluid and the Solid

models

In the present chapter we are going to introduce how the coupling between the fluid

model and the solid model is done. For the coupling we are using a staggered approach

that has been tested to be robust and to provide accurate enough results.

The weak coupling or staggered approach consists on computing explicitly the

pressure on the fluid using as a starting point the velocity field in the solid the

previous step.

Then we use the computed Pressure field over the solid boundary in order to

obtain the forces and computing the solid displacements and velocities.

Then we start the procedure again for the next time step. We can see the repre-

sentation of the scheme in figure 4.1.

Coupling has been the main issue in the present work, because the solid and the

fluid model work in complete different ways.

The first drawback is that points where the fluid properties and the solid prop-

erties are defined (mesh) do not necessarily match. That means in order to transfer

information from one model to another we have to interpolate information in an

efficient way.

The second one is that while the solid model works in cartesian coordinates, the

fluid model works in polar coordinates. So that we must implement an efficient way

to translate from cartesian to polar coordinates.
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4. Coupling the Fluid and the Solid models

Figure 4.1: Time Iteration Scheme

The last one, but also the most complex one is that solid model works in a spatial

distribution of values, while fluid model works with the Fourier decomposition of

the values over the boundary. So that we need to perform Fourier integration and

decomposition at each time step.

In figure 4.2 we can see a complete scheme of the procedure, including the need

transformations in data.

4.1 Input and Output parameters on the Fluid

The fluid is characterized by its density ρf and its fluid sound velocity cf , and the

shockwave is characterized by the initial position the decay and the peak pressure

R0, λ, pα. With these data we can compute at each time both incident pressure (p0)

and diffracted pressure (pd), that do only depend on the outer shape of solid (and is

always the same), so we can compute them once and use them for all the simulations

that match the shockwave.

From them, we have to compute at each time step the radiated pressure (pr). For

computing so, we need the response function ψ and the fluid interface radial velocity

(ẇ). In fact we work in Fourier decompositions so we need their Fourier coefficients.

• INPUT: ẇn|FLUID Fourier terms of the radial velocity on the fluid mesh.
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4.2. Input and Output parameters on the Solid

Figure 4.2: Complete Algorithm

• OUPUT: prn|FLUID Fourier terms of the radiated pressure on the fluid mesh.

4.2 Input and Output parameters on the Solid

The solid is characterized by its elastic parameters E, ν and its density ρs. With these

parameters we can obtain the sound velocity in the solid cs. For the given geometry
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4. Coupling the Fluid and the Solid models

(and its partition or mesh) we can ensamble the stiffness matrix K, the mass matrix

M the dumping matrix C and using Newmark’s method combine them for obtaining

K∗. But at each time step we need to compute the acting forces over the solid and

they depend on the total pressure, so it is our input parameter for the coupling. As

a result from solving the motion, we obtain u, v, u̇, v̇, ü, v̈.

• INPUT: p|SOLID Total pressure on the solid mesh.

• OUPUT: u, v, u̇, v̇, ü, v̈|SOLID Displacements, velocities and acceleration in carte-

sian coordinates.

4.3 From fluid to solid mesh (and viceversa).

Interpolating membrane

As we have seen in previous sections fluid and solid meshes do not necessarily match.

And coupling parameters on both solid and fluid model are defined in them, we have

to develop an efficient way to transfer values between meshes.

Our inspiration has been to create a mathematical interface containing the posi-

tion of the nodes of both meshes. So that we can fix the values on one mesh and then

interpolate the values on the other mesh, so we when we transfer from solid to fluid,

we fix the values on the solid and then interpolate the values on the fluid.

As we have to perform this operation at each time step, we developed an efficient

way to deal with this interpolation.

We used shape functions, so that any shape on any mesh could be written as

combination of these shape functions, so we can write the values of the shape functions

on the other mesh. Thus for any set of values on one mesh, we can compute the values

on the other mesh as the sum of the contribution of the shape functions times the

value at the initial point.

uM1 =

n1∑
i=1

U i
M1N

i
M1 (4.1)

ûi,jM2 = N j
M1(θi) i = 1, . . . , n2 (4.2)

Using this decomposition we can write it in a matrix way.
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4.4. From cartesian to polar coordinates

UM2 =


û1,1
M2 û1,2

M2 · · · û1,n1

M2
...

...

ûn2,1
M2 ûn2,2

M2 · · · ûn2,n1

M2




U1
M1

U2
M1

· · ·
Un1
M1

 (4.3)

So once we obtain both matrices we can transfer fields from one mesh to the other

just by multiplying them by a matrix. So at the very beginning we compute both

matrices.

• IFS: Matrix that transforms values from fluid mesh to solid mesh

• ISF : Matrix that transforms values from solid mesh to fluid mesh

So that,

Vfluid = ISFVsolid (4.4)

Vsolid = IFSVfluid (4.5)

4.4 From cartesian to polar coordinates

As we have seen previously, we obtain the displacements and velocities in the solid

in cartesian coordinates, but then we need the radial displacement and velocities to

compute the radiated pressure.

For doing so, we have computed at first step our outer circle center. It is used

also as a verification, so that the outer shape is circular and no other outer shapes

are used. From the computed center, we compute the outward unitary radial vectors.

From then we compute the projection of unitary vectors in both x and y over those

directions (keeping track of the point they belong to).

So for any point if we denote the unitary vector in the radial direction as vj =

(vxj , v
y
j ) and if we denote any value in cartesian coordinates cj = (cxj , c

y
j ). We can

compute the radial projection of cj as.

cj|radial = cxj v
x
j + cyjv

y
j (4.6)

So that we can compute it in a matricial way as:

c|radial =
(
vx1 , · · · , vxn

)
cx1
...

cxn

+
(
vy1 , · · · , vyn

)
cy1
...

cyn

 (4.7)
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4. Coupling the Fluid and the Solid models

So we can achieve that conversion multiplying x and y values by matrices IxCP
and IyCP and adding the results. Those matrices are the cartesian to radial conversion

matrices.

c|radial = IxCP


cx1
...

cxn

+ IyCP


cy1
...

cyn

 (4.8)

where,

IxCP = diag
(
vx1 , · · · , vxn

)
(4.9)

IyCP = diag
(
vy1 , · · · , vyn

)
(4.10)

4.5 Harmonic decomposition and reconstruction

The last thing we have to solve for effectively coupling the fluid and solid model is

being able to effectively switch between nodal values and harmonics and viceversa.

If we recall the expression in harmonics.

f(θ) =
f0

2
+
∞∑
n=1

f cn cosnθ +
∞∑
n=1

f sn sinnθ (4.11)

We can approximate any function by a finite number of harmonics, the more har-

monics we use, the more accurate it is. So for a given number of harmonics nh.

f(θ) ≈ f0

2
+

nh∑
n=1

f cn cosnθ +

nh∑
n=1

f sn sinnθ (4.12)

4.5.1 Harmonic reconstruction. From harmonics to values

over the mesh

If we define a vector where we store all the harmonic values

fharmonic =



f0

f c1
...

f cnh
f s1
...

f snh


(4.13)
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4.5. Harmonic decomposition and reconstruction

By construction, we can check that we can obtain the values over the mesh (defined

by angles θ1, . . . , θn) as:


f(θ1)

...

f(θn)

 =


1/2 cos θ1 . . . cosnhθ1 sin θ1 . . . sinnhθ1

...
...

1/2 cos θn . . . cosnhθn sin θn . . . sinnhθn





f0

f c1
...

f cnh
f s1
...

f snh


(4.14)

So that we can rename them as

fmesh = IHV fharmonics (4.15)

4.5.2 Harmonic decomposition. From values over the mesh

to harmonics

From Fourier series theory we know that we can compute the terms in equation 4.11

as

f0 =
1

π

∫ π

−π
f(θ)dθ (4.16)

f cn =
1

π

∫ π

−π
f(θ) cosnθdθ (4.17)

f sn =
1

π

∫ π

−π
f(θ) sinnθdθ (4.18)

As we are using linear interpolation over the outer circle, we can write f(θ) as an

approximation with interpolation functions. With Ni(θ) is the shape function for θi

f(θ) ≈
np∑
i=1

fiNi(θ) (4.19)
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4. Coupling the Fluid and the Solid models

Then we can rewrite the previos equations as:

f0 =
1

π

∫ π

−π

(
np∑
i=1

fiNi(θ)

)
dθ (4.20)

f cn =
1

π

∫ π

−π

(
np∑
i=1

fiNi(θ)

)
cosnθdθ (4.21)

f sn =
1

π

∫ π

−π

(
np∑
i=1

fiNi(θ)

)
sinnθdθ (4.22)

Re-arranging terms:

f0 =

np∑
i=1

fi

(
1

π

∫ π

−π
Ni(θ)dθ

)
(4.23)

f cn =

np∑
i=1

fi

(
1

π

∫ π

−π
Ni(θ) cosnθdθ

)
(4.24)

f sn =

np∑
i=1

fi

(
1

π

∫ π

−π
Ni(θ) sinnθdθ

)
(4.25)

As we are using linear interpolation, If we define ∆i,j = θj − θi, and we suppose

θ1 < θ2 < . . . < θnp we can write Ni(θ) as:

Ni(θ) =



(θ − θi−1)

∆i−1,i

if θi−1 < θ ≤ θi

(θi+1 − θ)
∆i,i+1

if θi−1 < θ < θi

0Otherwise

(4.26)

Then we can compute the integrals analytically:

∫ π

−π
Ni(θ) cosnθdθ =

∫ θi

θi−1

(θ − θi−1)

∆i−1,i

cosnθdθ +

∫ θi+1

θi

(θi+1 − θ)
∆i,i+1

cosnθdθ (4.27)

N i,n
c =

∫ π

−π
Ni(θ) cosnθdθ =

[nθ sinnθ+cosnθ−θi−1n sinnθ]θ
i

θi−1

n2∆i−1,i
−

− [nθ sinnθ+cosnθ−θi+1n sinnθ]θ
i+1

θi

n2∆i,i+1

(4.28)

In the same way:
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4.5. Harmonic decomposition and reconstruction

N i,n
s =

∫ π

−π
Ni(θ) sinnθdθ =

[sinnθ−nθ cosnθ+θi−1n cosnθ]θ
i

θi−1

n2∆i−1,i
−

− [sinnθ−nθ cosnθ+θi+1n cosnθ]θ
i+1

θi

n2∆i,i+1

(4.29)

N i,n
0 =

∫ π

−π
Ni(θ)dθ =

[
θ2/2−θi−1θ

∆i−1,i

]θi
θi−1

−
[
θ2/2−θi+1θ

∆i,i+1

]θi+1

θi
(4.30)

So we can write it in a matrix form as:

f0

f c1
...

f cnh
f s1
...

f snh


=



N1
0 N2

0 · · · N
np
0

N1,1
c N2,1

c · · · N
np,1
c

...
...

N1,nh
c N2,nh

c · · · N
np,nh
c

N1,1
s N2,1

s · · · N
np,1
s

...
...

N1,nh
s N2,nh

s · · · N
np,nh
s




f1

f2

...

fn

 (4.31)
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Chapter 5

Results and Validation

For all the cases in this chapter we have used the same shockwave and the same fluid

properties. As we have pointed out in the previous chapter 2 exactly in sections 2.2

and 2.3, we are using a linearly compressible, inviscid irrotational fluid model, and

we are using a exponential peak decay model for the shockwave.

So the fluid and the shockwave are fully determined by:

Fluid

cf 1, 470m/s Sound speed in fluid

Shockwave

R0 4.00m Position of the shockwave focus

λ 3.76ms Exponential decay

pα 25 kPa Peak pressure in the front

We must recall that shockwave comes from the right in our representations so

that the the plot point 1 or head is the one in the outer radius when θ = 0 and the

plot point 2 or tail is the once in the outer radius when θ = π.

5.1 Thin Shell. Validation

As a first example, we have run a simulation using a plain thin shell made of steel.

Although previous methods were capable of computing that geometry, we are using

this specific geometry as a validation test of our model. We want to reproduce exactly
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5. Results and Validation

the same simulation and compare both results in order to ensure the goodness of the

results.

The used geometry is a thin steel evacuated pipe with the following characteristics.

Geometry

r0 1.00m Outer radius

h0 0.03m Thickness

Materials

E 4.5895 · 1011 Pa Young Modulus

ν 0.30 Poisson Coefficient

cs 7, 990m/s Sound speed in solid

ρ 7, 900 kg/m3 Density

On the next figures we can see first the geometry and the used mesh (figures 5.1

and 5.1 ). Then we have plotted the displacement in radial direction w both in Head

and Tail (figure 5.3) and also its velocities ẇ (figure 5.4). In figure 5.7 we can see the

total pressure evolution in Head and Tails, while in figures 5.8 and 5.9 we can see the

contribution of the incident and the diffracted wave (p0 + pd) and the radiated wave

(pr) for both Head and Tail.

In figures 5.5 and 5.6 we can see the plot of our method’s result in red compared

to the ones using regular Reissner-Meindlin computations. In fact we are comparing

radial displacements and radial velocities in the Head point. We can see in figure 5.5

that both results match almost perfectly and in fact both lines are hard to distinguish.

In figure 5.6 we have performed the same operation but using the radial velocity ẇ

instead of w. We can see in this figure that values match very well except for the very

late times where we can observe a slight variation in phase (that seems to start much

earlier and increase along time) probably due to the change in structure stiffness

caused by the FEM discretization.

In figure 5.10 we can see the the reconstruction of the acoustic field for times

t̂ = 0.5, t̂ = 1.2, t̂ = 1.9, t̂ = 2.6, t̂ = 3.3 and t̂ = 4.0. We can see how the shockwave

arrives from the right and how even when the shockwave has not arrived yet to some

parts the fluid are already affected by the radiated pressure.
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5.1. Thin Shell. Validation

From then, as the effect of the incident shockwave vanishes in the fluid, we can

appreciate the effect of the radiated pressure all over the fluid, for instance in t̂ = 4.0

he acoustic field is clearly dominated by the vibration of the the solid.

Figure 5.1: Thin Shell. Geometry

Figure 5.2: Thin Shell. Mesh
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5. Results and Validation

Figure 5.3: Thin Shell. w in Head and Tail

Figure 5.4: Thin Shell. ẇ in Head and Tail
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5.1. Thin Shell. Validation

Figure 5.5: Thin Shell. w comparison in Head

Figure 5.6: Thin Shell. ẇ comparison in Head
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5. Results and Validation

Figure 5.7: Thin Shell. Total pressure in Head and Tail

Figure 5.8: Thin Shell. Pressure decomposition in Head
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5.1. Thin Shell. Validation

Figure 5.9: Thin Shell. Pressure decomposition in Tail
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5. Results and Validation

(a) Thin Shell. Acoustic field t̂ = 0.5 (b) Thin Shell. Acoustic field t̂ = 1.2

(c) Thin Shell. Acoustic field t̂ = 1.9 (d) Thin Shell. Acoustic field t̂ = 2.6

(e) Thin Shell. Acoustic field t̂ = 3.3 (f) Thin Shell. Acoustic field t̂ = 4.0

Figure 5.10: Thin Shell. Acoustic field
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5.2. Heavy attached masses

5.2 Heavy attached masses

As a second example, we have run a simulation using a the same thin evacuated shell

made of steel of the previous simulation but we have added two heavy masses made

of lead.

Geometry

r0 1.00m Outer radius

h0 0.03m Thickness

α ±3π/4 Starting angle of the added masses

h 0.15m Added masses height

w 9◦ Added masses angular widht

Materials

Es 4.5895 · 1011 Pa Young Modulus steel

νs 0.30 Poisson Coefficient steel

css 7, 990m/s Sound speed in solid steel

ρs 7, 900 kg/m3 Density steel

El 16 · 109 Pa Young Modulus lead

νl 0.25 Poisson Coefficient lead

csl 1, 226.78m/s Sound speed in solid lead

ρl 11, 340 kg/m3 Density lead

On the next figures we can see first the geometry and the used mesh (figures 5.11

and 5.11 ). Then we have plotted the displacement in radial direction w both in Head

and Tail (figure 5.13) and also its velocities ẇ (figure 5.14). In figure 5.15 we can see

the total pressure evolution in Head and Tails, while in figures 5.16 and 5.17 we can

see the contribution of the incident and the diffracted wave (p0 +pd) and the radiated

wave (pr) for both Head and Tail.

In figure 5.18 we can see the the reconstruction of the acoustic field for times

t̂ = 0.5, t̂ = 1.2, t̂ = 1.9, t̂ = 2.6, t̂ = 3.3 and t̂ = 4.0. In this case, the result can

be seen as the addition of the acoustic field for the thin shell plus the effect of the

two attached masses. The attached masses act as fuming for the propagation of the

shock inside the solid, but then, when the solid starts to vibrate, they act as a source

of acoustic pulses in the fluid domain with low frequency.
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5. Results and Validation

Figure 5.11: Heavy Masses. Geometry

Figure 5.12: Heavy Masses. Mesh
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5.2. Heavy attached masses

Figure 5.13: Heavy Masses. w in Head and Tail

Figure 5.14: Heavy Masses. ẇ in Head and Tail
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5. Results and Validation

Figure 5.15: Heavy Masses. Total pressure in Head and Tail

Figure 5.16: Heavy Masses. Pressure decomposition in Head
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5.2. Heavy attached masses

Figure 5.17: Heavy Masses. Pressure decomposition in Tail
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5. Results and Validation

(a) Heavy Massess. Acoustic field t̂ = 0.5 (b) Heavy Massess. Acoustic field t̂ = 1.2

(c) Heavy Massess. Acoustic field t̂ = 1.9 (d) Heavy Massess. Acoustic field t̂ = 2.6

(e) Heavy Massess. Acoustic field t̂ = 3.3 (f) Heavy Massess. Acoustic field t̂ = 4.0

Figure 5.18: Heavy Masses. Acoustic field
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5.3. Light attached masses

5.3 Light attached masses

Next example is adding 2 masses also but in this case they are much smaller and

made of the same material. We can see in the problem description in the following

table.

Geometry

r0 1.00m Outer radius

h0 0.03m Thickness

α ±π/4 Starting angle of the added masses

h 0.03m Added masses height

w 1.8◦ Added masses angular width

Materials

E 4.5895 · 1011 Pa Young Modulus

ν 0.30 Poisson Coefficient

cs 7, 990m/s Sound speed in solid

ρ 7, 900 kg/m3 Density

On the next figures we can see first the geometry and the used mesh (figures 5.19

and 5.19 ). Then we have plotted the displacement in radial direction w both in Head

and Tail (figure 5.21) and also its velocities ẇ (figure 5.22). In figure 5.23 we can see

the total pressure evolution in Head and Tails, while in figures 5.24 and 5.25 we can

see the contribution of the incident and the diffracted wave (p0 +pd) and the radiated

wave (pr) for both Head and Tail.

In figure 5.26 we can see the the reconstruction of the acoustic field for times

t̂ = 0.5, t̂ = 1.2, t̂ = 1.9, t̂ = 2.6, t̂ = 3.3 and t̂ = 4.0. As in the previous example of

the heavy masses, seen in section 5.2, we can see the acoustic field as the superposition

of the one generated by the shell plus the generated by the light masses. We can see

the effect is very similar to the one produced by the heavy masses, but now the

frequency is higher.
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5. Results and Validation

Figure 5.19: Light Masses. Geometry

Figure 5.20: Light Masses. Mesh
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5.3. Light attached masses

Figure 5.21: Light Masses. w in Head and Tail

Figure 5.22: Light Masses. ẇ in Head and Tail
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5. Results and Validation

Figure 5.23: Light Masses. Total pressure in Head and Tail

Figure 5.24: Light Masses. Pressure decomposition in Head
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5.3. Light attached masses

Figure 5.25: Light Masses. Pressure decomposition in Tail
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5. Results and Validation

(a) Light Masses. Acoustic field t̂ = 0.5 (b) Light Masses. Acoustic field t̂ = 1.2

(c) Light Masses. Acoustic field t̂ = 1.9 (d) Light Masses. Acoustic field t̂ = 2.6

(e) Light Masses. Acoustic field t̂ = 3.3 (f) Light Masses. Acoustic field t̂ = 4.0

Figure 5.26: Light Masses. Acoustic field
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5.4. Reinforced structure

5.4 Reinforced structure

Now we have added a vertical reinforcement of the same material, placed in the

oposite side the shockwave comes from. Here we can see the parameters that govern

the problem.

Geometry

r0 1.00m Outer radius

h0 0.03m Thickness

α ±3π/4 Starting angle of the reinforcement

w 0.0212m reinforcement width

Materials

E 4.5895 · 1011 Pa Young Modulus

ν 0.30 Poisson Coefficient

cs 7, 990m/s Sound speed in solid

ρ 7, 900 kg/m3 Density

On the next figures we can see first the geometry and the used mesh (figures 5.27

and 5.27 ). Then we have plotted the displacement in radial direction w both in Head

and Tail (figure 5.29) and also its velocities ẇ (figure 5.30). In figure 5.31 we can see

the total pressure evolution in Head and Tails, while in figures 5.32 and 5.33 we can

see the contribution of the incident and the diffracted wave (p0 +pd) and the radiated

wave (pr) for both Head and Tail.

In figure 5.34 we can see the the reconstruction of the acoustic field for times

t̂ = 0.5, t̂ = 1.2, t̂ = 1.9, t̂ = 2.6, t̂ = 3.3 and t̂ = 4.0. In this case, we can see a very

similar effect to the one produced by he masses, but now the effect of the dumping

is much more evident. The reinforcement also adds a new bifurcation for shockwave

in the solid, so that it generates sort of an interference in the vibration of the shell

creating a more blurred acoustic field.
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5. Results and Validation

Figure 5.27: Reinforced Structure. Geometry

Figure 5.28: Reinforced Structure. Mesh
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5.4. Reinforced structure

Figure 5.29: Reinforced Structure. w in Head and Tail

Figure 5.30: Reinforced Structure. ẇ in Head and Tail
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5. Results and Validation

Figure 5.31: Reinforced Structure. Total pressure in Head and Tail

Figure 5.32: Reinforced Structure. Pressure decomposition in Head
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5.4. Reinforced structure

Figure 5.33: Reinforced Structure. Pressure decomposition in Tail
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5. Results and Validation

(a) Reinforced Structure. t̂ = 0.5 (b) Reinforced Structure. t̂ = 1.2

(c) Reinforced Structure. t̂ = 1.9 (d) Reinforced Structure. t̂ = 2.6

(e) Reinforced Structure. t̂ = 3.3 (f) Reinforced Structure. t̂ = 4.0

Figure 5.34: Reinforced Structure. Acoustic field
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Appendix A

Notation

Variable Meaning Adimensional

cf Sound speed in the fluid ĉf = 1

cs Sound speed in the solid ĉs = csc
−1
f

E Young Modulus (Related to cs)

In Modified Bessel function of the first kind of order n

IxCP Transformation matrix from cartesian to polar. X direction

IyCP Transformation matrix from cartesian to polar. X direction

IFS Transformation matrix from fluid to solid mesh

IHV Transformation matrix from harmonics to mesh values

ISF Transformation matrix from solid to fluid mesh

IV H Transformation matrix from mesh values to harmonics

Kn Modified Bessel function of the second kind of order n

K F.E.M. Stiffness Matrix

K∗ F.E.M. Neumark modified Stiffness Matrix

M F.E.M. Mass matrix

pα Peak incident pressure p̂α = pαρ
−1
f c−2

f

p0 Incident pressure p̂0 = p0ρ
−1
f c−2

f

pd Difraction pressure p̂d = pdρ
−1
f c−2

f

pr Radiated pressure p̂r = prρ
−1
f c−2

f

p Total pressure on the fluid p̂ = pρ−1
f c−2

f

r Radial coordinate of the polar system r̂ = rr−1
0
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A. Notation

Variable Meaning Adimensional

r0 Outer radius of the body r̂0 = 1

R0 Radial distance to the source of the incident wave R̂0 = R0r
−1
0

t Time t̂ = tcfr
−1
0

u Horizontal displacement û = ur−1
0

U F.E.M. Nodal displacement vector

v Vertical displacement v̂ = vr−1
0

w Radial displacement ŵ = wr−1
0

ε Strain tensor

θ Angular coordinate of the polar coordinate system

ν Poisson ratio

ξ Volume response function

ρf Density of the fluid ρ̂f = 1

ρs Density of the solid ρ̂s = ρsρ
−1
f

φ Fluid velocity potential φ̂ = φc−1
f r−1

0

φ0 Fluid velocity potential due to the incident wave φ̂0 = φ0c
−1
f r−1

0

φd Fluid velocity potential due to the diffracted wave φ̂d = φdc
−1
f r−1

0

φr Fluid velocity potential due to the radiated wave φ̂r = φrc
−1
f r−1

0

ψ Surface response function

Table A.1: Notation

Harmonic series term: We denote with a subscript the n-th term of the Fourier

serie as (·)n , so that they will be (·)n sin(nθ) and (·)n cos(nθ).

Matrix notation: We denote with two subscript Aij the term in the i-th file and

j-th column.

Laplace transform: we use the capital letter of a small letter variable to denote

the Laplace transform of the variable.

Other used notations are introduced in the text.
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