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ABSTRACT 
 

This work presents a series of benchmarks and the consequent analysis of the 
results for the non-linear shell element implementation within Kratos program of 
CIMNE research organization at the UPC BARCELONATECH University. 

The theoretical basis of the shell elements is the corotational (CR) formulation 
of finite elements. 

The benchmarks were selected to demonstrate the efficiency and accuracy of 
the present shell elements under several linear and non-linear stress/strain 
cases with small and large displacements. All the results of the shell elements 
showed good agreement with the references or the analytical solution. 

Comparison with other commercial codes (Abaqus and Xfinas) was also made 
in order to establish not only the correctness of the formulation but the accuracy 
towards current standards.  

Key words: benchmarks, validation, nonlinear structural analysis, corotational 
description, shell finite elements, Kratos. 
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1. INTRODUCTION 

The objective of this work is to validate the shell type elements within Kratos 
program. The theoretical basis of the shell elements is the co-rotational (CR) 
formulation of finite elements by Carlos A. Felippa and Bjorn Haugen, and the 
implementation of the code into the program was done by Massimo Petracca, 
external tutor of this master thesis. 

Validation is a needed process to check the correctness of the theory behind 
the finite element, but also the implementation of the program. This process has 
the double purpose of being a quality control of the software previous to the 
release to the user and to detect situations in which the mathematical model of 
the element is not efficient enough allowing us to focus the research of future 
improvements. 

The elements that have been tested are quadrilateral thick elements with 4 
nodes and triangular thin elements with 3 nodes and uniformly reduced 
integration to avoid shear and membrane locking, which are the elements 
implemented at the moment when this master thesis was written. 

In order to validate the fore-mentioned shell elements, the patch test, distortion 
test and other various numerical tests are carried out using GiD and Kratos. 
Kratos is a framework for building multi-disciplinary finite element programs and 
GiD is a pre and post-processor for numerical simulations in science and 
engineering. Both programs are developed by CIMNE research organization at 
the UPC BARCELONATECH University. 

The different benchmarks tested were selected to demonstrate the efficiency 
and accuracy of the present shell elements towards different strain/stress 
states. The linear benchmarks tested in this thesis are normalized and 
compared with the analytical solution. For the non-linear benchmarks, NAFEMS 
tests have been used, since they have become the standard method of 
improving and verifying the accuracy of codes. The exception is the non-linear 
post-buckling analysis benchmark whose reference publication is G. Dhatt. 
1970 [24]. 

All the results of the shell elements showed very good agreement with the 
references or the analytical solution, furthermore, comparison of the obtained 
results with known published program validation documentation such as 
Abaqus or Xfinas, confirm the similar or best performance than other classical 
formulations implemented in those commercial programs.  
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2. COROTATIONAL FORMULATION THEORY 

2.1. COROTATIONAL FORMULATION MAIN CONCEPTS 

Before exploring the benchmarks, this chapter will introduce the basic aspects 
of the formulation of the shell elements. For deeper documentation on the topic 
the reference paper is C. A. Felippa and B. Haugen C, 2005 [1]. The publication 
states a unified formulation from the most relevant publications about the issue. 

The key assumptions behind unified theoretical framework for the corotational 
formulation are:  

(i) strains from a corotated configuration are small while 

(ii) the magnitude of rotations from a base configuration is not restricted 

The element internal force and consistent tangent stiffness matrix are derived 
by taking variations of the internal energy with respect to nodal freedoms. 

The Corotational (CR) description is the most recent of the three in present use 
Lagrangian kinematic descriptions for finite element analysis of geometrically 
non-linear structures, and it is also the least developed one. The other 2 
descriptions are Total Lagrangian (TL) and Updated Lagrangian (UL). 

Since the three descriptions are Lagrangian kinematics, all of them follow the 
body (shell element for the purpose of this work) as it moves. The main 
difference between the CR formulation and the other two is that its domain of 
application is limited by a priori kinematic assumption: 

Displacements and rotations may be arbitrarily large, but deformations 
must be small. 

The CR formulation introduces the splitting of the Lagrangian tracking of the 
deformed body into two additive components. The first component tracks the 
rigid body motion part (including rotation) and the other one tracks just the 
deformation from the displaced and rotated original shape. 

The following figure shows schematically the decomposition of the Lagrangian 
mapping from the original configuration ��to the current or spatial configuration, 
which is called ��for deformed, with an intermediate step called��or corotated, 
which only has into account the solid rigid motion. 
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Figure 1  

CR kinematic description. 

�
� is the initial, original, 

undeformed or material 
configuration.  

�
� is the corotated 

configuration considering 
only rigid body motion. 
The associated coordinate 
system is Cartesian and 
follows the element like a 
ghost or shadow.  

�
� Is the deformed, current or spatial configuration and considers only 

deformational motion respect ��.  

 

2.2. COROTATIONAL FORMULATION APPLIED TO FEM 

The co-rotational concept in the continuum mechanics field has been known 
from 2 centuries ago. It has been applied since the beginning of the XX century 
to the study of whole structures, and Fraeijs de Veubeke 1976 [2] made a 
systematic formulation of the previous approaches closing the subject for whole 
structures. The “shadowing problem” approach presents the drawback of the 
non-uniqueness orienting a corotated Cartesian frame in case of axis symmetry 
of the body, which is frequent in aeronautics, being the main field of use. 

It has not been since the last decades of XX century that has been used as part 
of FEM improvement research. Crisfield 1990, 1997, 1997 [3–5], developed the 
concept of “consistent CR formulation” where the stiffness matrix appears as 
the true variation of the internal force. Rankin [6] and Brogan at Lockheed 
introduced the concept of “element independent CR formulation” or EICR, which 
was improved in a series of publications by Rankin, Nour-Omid and coworkers 
[7–12]. While the EICR formulation benefits conceptually from the shadowing 
problem it uses projection operators to avoid the use of explicit “shadow” 
configurations. 
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The frame for nonlinear thin shell analysis introduced by Haugen 1994 [13], 
combines   tools from the EICR (projectors and spins) with the shadow element 
concept and assumed strain element formulation. It is able to generate a set of 
hierarchical CR formulations and the use of spins instead of rotations for 
incremental nodal freedoms simplifies the EICR “front end” and facilitates 
attaining consistency. 

Kratos program uses this formulation applied to geometrically nonlinear 
structural analysis shell elements. The main modifications from the Fraeijs de 
Veubeke’s idea are: 

1. Multiple Frames. One CR frame per finite element is introduced, instead 
of one CR frame for the whole structure.  

2. Geometric-Based RBM Separation. The rigid body motion is separated 
directly from the total element motion using elementary geometric 
methods. For instance in a 2-node bar or beam one axis is defined by the 
displaced nodes, while for a 3-node triangle two axes are defined by the 
plane passing through the points, as shown in next figure. 

 

 

Figure 2: Geometric-Based RBM Separation in the tracking of CR discrete 
elements (a) beams, (b) membrane/shells 
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Taking as summary a paragraph of the Haugen's publication: 

“In the co-rotation approach, the deformational part of the displacement is 
extracted by purging the rigid body components before any element 
computation is performed. This pre-processing of the displacements may be 
performed outside the standard element routines and thus is independent of 
element type (except for slight distinctions between beams, triangular and 
quadrilateral elements).” 

The following figure summarize the way EICR splits the rigid body motion part 
and the deformational part of the problem into the code. The flow chart is mainly 
conceptual. For computational efficiency the interface logic may be embedded 
with each element through in lining techniques. 

 

Figure 3: Flow chart for CR “Filters” and FEM Library, solver and Assembler. 
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3. SHELL ELEMENTS IMPLEMENTED IN KRATOS 

Currently, the implementation in of the shell elements is under development in 
the Kratos program, as stated in the introduction.  

The two elements that are already implemented and which this work tests are 
the triangular thin element with 3 nodes, and the quadrilateral thick element with 
4 nodes and reduced integration. 

As expanded below, CR formulation is the Element-Independent CR 
formulation, so it is common for both elements, but the computation of the 
Internal Forces and the Tangent (material) Stiffness matrix depends on the 
thickness of the element (considering or not transverse shear locking) and on 
the shape of the element (triangular and quadrilateral elements have different 
ways to confront membrane shear locking). 

 

The scheme of implementation is: 

At any given time step, and iteration the following steps are followed: 

The 'Corotational Filter' removes the rigid body displacements/rotations: 

 [(Total_Displacements_Rotations - Rigid_Displacements_Rotations = 

  = Deformational(Small)_Displacement_Rotations] 

Once removed, everything is transformed from global to local coordinate 
system, which consists in a set of coordinates for each shell element. 

Within the local coordinates, the computation of the Internal Forces (-Fi) and the 
Tangent (material) Stiffness matrix (Km) of one of the 'Core Elements (for small 
displacements)' is performed. In this step lays the main difference among the 
two elements can be found. 

a) Quadrilateral Thick Element:  

For thick plates transverse shear locking arises, and consequently 
Reissner-Midlin Thick MITC4 shell formulation is implemented. 

Regarding the membrane shear locking phenomenon, the formulation 
implemented is EAS (Enhanced Assumed Strains) stated by C. J. Simo 
and M. S. Rifai 2003 [14]. 
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b) Triangular Thin Element:  

DKT Discrete Kirchhoff Triangle shell formulation is implemented. 

Regarding the membrane shear locking phenomenon, the formulation 
implemented is ANDES (Assumed Natural Deviatoric Strains) stated by C. A. 
Felippa 2003 [15]  

In the next step the 'Corotational Filter' re-applies rigid body displacements and 
rotations to the deformational ones just computed. 

Then the contribution of geometric nonlinearity is added. 

 Ke = Km + Kg (Geometric stiffness matrix) 

Finally, transformation back from local to global coordinate system is applied. 
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4. LINEAR STATIC ANALYSIS OF ISOTROPIC 
SHELL ELEMENT 

4.1. TAPERED AND SWEPT BEAM 

The tapered and swept beam is a plane stress problem consisting in a 
trapezoidal beam subjected to a linear load on the free edge. The loading leads 
the free edge to rotate over the upper part of the clamping were the 
compression stress is concentrated in both directions, and all the lower and free 
edge part of the beam is subjected to tensile stress.  

This simple 2D problem has analytical solution stated in Simo et al. 1989 [16] so 
it was the first element to test. In order to compare the numerical solution 
obtained with other elements, the 4 and 3 point nodes from the software Xfinas 
was the reference. 

Problem description 

The trapezoidal 2D beam is clamped by a vertical edge of 44 unit length. The 
opposite free edge of 16 units length is also vertical, the length between them is 
28 units and the lower point of the free edge is horizontal coincident with the 
upper point of the clamped edge. The 2 remaining edges complete the 
trapezoid.  

Since Kratos shell GiD 
interface has not 
implemented the plane 
stress type of problem, apart 
from the clamping, Uz=0, 
Rx=0 and Ry=0 Boundary 
Conditions were stated.  

The shell has 1 unit 
thickness and as material 
properties, Poisson’s ratio 
0.33 and Young’s Modulus 1 
in any consistent unit 
system. 

All over the free edge a 
uniform vertical distributed 
load of total value 1.0 is 
applied. 

 

Figure 1 

Problem geometry and material properties 
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Three different types of meshes are used in the test, with several refinements. 
The regular quadrilateral 2x2 mesh is the coarser mesh, and is refined by 
doubling the elements per edge at each refinement leading to 4x4, 8x8, 16x16 
and 32x32 meshes. 

The other 2 meshes consist in just splitting the quadrilateral meshes by the 
diagonals, being the mesh1 from bottom left corner to upper right and mesh 2 
the other diagonal. Using different triangular meshes allow us to check the 
impact of mesh orientation and a bit of skew sensitivity for both elements. 

 

   

Quadrilateral mesh Mesh 1  Mesh 2 

Figure 2. Meshes used for tapered and swept beam 

 

Results 

As advanced in the problem description, the deformation consist on the lifting 
(in xy plane) of the free edge that turns into a general rotation over the upper 
part of the clamped edge due to the internal forces.  

Consequently with the deformation, upper left part of the beam is compressed 
and lower right part tensioned, while shear follows the load direction. 

Attached next are the figures showing the final deformed state, and the 
compression and tension stresses for some random meshes. 
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Figure 3 displacements, Sx and Sy shell forces for different meshes. 

The magnitude of interest for comparison with analytical solution and xshell41 
and xshell31 Xfinas elements is the y tip displacement (the center pint of the 
free edge).  

 

23.91

mesh Xshell41
Triangular 
thin Kratos Xshell41

Triangular 
thin Kratos

2x2 16.594 22.0090 -30.60% -7.95%
4x4 19.511 23.0240 -18.40% -3.71%
8x8 22.404 23.6540 -6.30% -1.07%

16x16 23.480 23.8620 -1.80% -0.20%
32x32 23.814 23.9260 -0.40% 0.07%

Xshell31
Triangular 
thin Kratos Xshell31

Triangular 
thin Kratos

2x2 16.689 17.9120 -30.20% -25.09%
4x4 21.280 20.5370 -11.00% -14.11%
8x8 23.145 22.4000 -3.20% -6.32%

16x16 23.719 23.3660 -0.80% -2.28%
32x32 23.7290 -0.76%

2x2 19.248 18.5160 -19.50% -22.56%
4x4 21.495 21.6520 -10.10% -9.44%
8x8 23.432 23.1110 -2.00% -3.34%

16x16 23.814 23.6670 -0.40% -1.02%
32x32 23.8540 -0.23%
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The next plots show the evolution of the relative error versus the number of 
elements in one side. 

   

Quadrilateral mesh Triangular Mesh 1 Triangular Mesh 2 

Figure 4, Relative error versus n of elements in one side 

It can be seen that the numerical solution is converging towards the reference 
one even though for the last quadrilateral fine mesh, the relative error changes 
of sign. Comparing the numerical results leads to the conclusion that both 
Kratos elements achieved the expected accuracy. Furthermore, comparing the 
results with Xfinas elements, it can be seen that triangular element had 
equivalent performance, while quadrilateral element showed better 
performance, since for all the quadrilateral meshes, Kratos result has less than 
half relative error than Xfinas element. 

 

Regarding convergence, 
the three meshes 
present an almost 
constant slope. This 
behavior is good since 
allows to improve linearly 
the accuracy by refining 
the mesh.  

 

Figure 5 convergence analysis (abs of relative error 
vs. n elements log scale) for the elements in the 3 
meshes used. 
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4.2. PURE BENDING OF A CANTILEVER BEAM SUBJECT TO 
END MOMENT 

It is usual to perform this test as an initial problem tackle in order to test the 
accuracy of the element under extreme inextensional bending and large 
deformation. This problem consisting in a straight cantilever subjected to a 
concentrated free end moment, has been analyzed by a number of researches, 
and has analytical solution. To further information see Bathe and Bolourchi 
1979 [17]. 

For the proposed problem, the only non-trivial 
deformation component is the flexural one on the 
YZ plane (XY in the GiD implemented model). 
Moreover, according to the classical Euler 
formula, this bending deformation is constant 
along the beam, and it follows the curve 
described in the figure on the right. 

 

Although this is a linear test, the test was performed with a quasistatic strategy 
for an incremental moment in order to avoid error compensations due to the 
symmetry of some components of the deformation.   

Problem description 

The test was designed to obtain a full bending of the beam in 100 steps in 
which the free edge should complete the 2π angle and touch the clamped edge. 
In order to do so, we must fulfill the analytical solution θ=M·L / E ·I 

The beam was defined with a 
length of 10mm and a width of 
0.2mm. The thickness of the 
shells is set to 0.2mm, to 
maintain the symmetry of the 
section and the Inertia. 

The material characteristics of 
the beam are Young's modulus 
79577MPa and Poisson's ratio 
0.0.  

So the resulting moment is 
6.6667N·mm 

 

Figure 6 geometry and material properties 
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A regular mesh of 1 element in 
the short direction and 12 
elements in the long direction 
was tested as initial mesh. 
Several refinements in the long 
direction were made to check the 
convergence. 

Figure 7 

The next figure shows the 
aforementioned mesh  

 

For the triangular element, the same base mesh was used, splitting the 
quadrilaterals by one diagonal.  

The kinematic type analysis was set to Large Displacements, and as mentioned 
in the before, the total moment was applied in 100 quasi-static steps, in order to 
check the full curve path for the deformation of the free edge.   

Results 

The final step obtained is consistent 
with the building of the problem, 
resulting in a circular deformed beam, 
since the momentum is the only load, 
and it causes a constant bending 
deformation. 

However, the evolution in time for the 
z rotation, x and y displacements in 
the free edge are the magnitudes of 
interest. 

 

Figure 8, final deformed state 

Recovering the analytical expression for the rotation, θ=M·L / E ·I, and the 
scheme of the deformation, we can compute also the analytical expression for 
the displacements. The expressions that read: 

Ux = r – r·cos θ = (L/θ)·tan(θ/2)·sin θ 

Uy = L-r·sin θ= L – (L/θ)·sin θ 
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The next figures show the evolution and the relative error of the displacement in 
both x and y directions and the rotation in z direction in the free edge of the 
beam, for the quadrilateral element and a 1x12 mesh. 

  

Figure 9 Ux, Uy and rotZ vs. time step  Figure 10 Absolute value of the relative 
error vs. time step. 

Even for a quite coarse mesh of 12 elements, the numerical approximation is 
very accurate, and we need to plot the relative error in order to observe de 
differences between the numerical and analytical solutions. 

For the case of the triangular element, similar figures are obtained. 

Analyzing the relative error plot, it can be observed a constant error for the 
rotation in z of the order of 10^-6. Since the rotation is directly linked to the 
momentum applied, we are just getting machine precision. 

On the other hand, the displacements evolve in a different way. The y 
displacement starts at zero, and the larger is the momentum applied, the larger 
becomes the error. On the contrary, the x displacement starts with the larger 
value, drops to zero at half the momentum (when the free edge gets to the 
same x position than the clamped edge) and starts another curve to come back 
to 0 at the end of the loading path. 

In order to analyze the evolution of the error as the mesh is refined in a 
magnitude relevant for the full cycle, the addition of all the absolute values of 
the relative errors was used. This magnitude was also used later to check the 
convergence of the element. 
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The following table shows the evolution of the relative errors with the refinement 
of the mesh for both triangular and quadrilateral elements. 

 

The obtained accuracy is almost the same for both elements. 

 

These results were rearranged in the following plot in order to show the 
convergence of the elements. Only quadrilateral results are displayed, but 
triangular elements have similar behavior. 

 

Figure 11, convergence analysis (abs of relative error vs. n elements log scale) 
for the quadrilateral thick element. 

The linear slope is almost perfect for both displacement relative errors. For the 
case of the rotation, the error is a machine precision error, derived from the 
accuracy of the type of number defined to store the data. 

12 
elements

24 
elements 48 elements

96 
elements

192 
elements

384 
elements

Summed 9.26E-02 2.31E-02 5.77E-03 1.44E-03 3.59E-04 8.81E-05
Maximum 1.74E-03 4.34E-04 1.08E-04 2.70E-05 6.71E-06 1.72E-06
Sumemd 3.89E-01 9.69E-02 2.43E-02 6.16E-03 1.63E-03 4.92E-04
Maximum 1.17E-02 3.00E-03 8.47E-04 3.11E-04 1.77E-04 1.43E-04

Summed 9.25E-02 2.31E-02 5.77E-03 1.44E-03 3.59E-04 8.85E-05
Maximum 1.74E-03 4.34E-04 1.09E-04 2.72E-05 6.90E-06 1.80E-06
Sumemd 3.89E-01 9.68E-02 2.42E-02 6.05E-03 1.52E-03 3.83E-04
Maximum 1.15E-02 2.89E-03 7.38E-04 2.02E-04 6.77E-05 3.42E-05

Ux relative 
error

Uy relative 
error

QUADRILATERAL THICK ELEMENTS
Ux relative 

error
Uy relative 

error

TRIANGULAR THIN ELEMENTS
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4.3. SKEW SENSITIVITY 

The skew sensitivity benchmark is designed to test the performance of the 
element subjected to skew distortion. This test is especially useful to extend the 
verification of the element for non regular geometries, since even we test 
distorted meshes in other benchmarks, other effects different than the angular 
distortion. 

This example can also be compared to known solutions (see L.S.D. Morley, 
1963 [18]), what makes it a very useful test for the element. There is also a 
compendium analysis for various commercial code performed by J. Robinson 
1985 [19] 

Problem description 

The benchmark consists in a rhomboid plane thin plate simply supported in all 
the edges. The material characteristics of the plate are Young's modulus 30 
MPa, and Poisson's ratio 0.3. An uniform pressure of 1.0 × 10–6 MPa is applied 
over the entire surface. Static analysis is stated in the type of calculation. 

The length of the edges of the rhomboid is fixed to 1.0 m long and 3 different 
angles are tested 90º, 60º and 30º. The thickness of the plate is 0.01 m, so the 
ratio thickness/length ratio is 1/100 and consequently shear lock would be 
significant, and transverse shear deformation should not be significant. 

Figure 12 

Regular meshes are 
applied which inherit the 
angular distortion of the 
plate's shape. For the 
triangular mesh, the 
division of the 
quadrilateral elements is 
done by dividing the plate 
into 4 quadrants and 
following the direction of 
the diagonal in each 
quadrant.   

 

This division enhances the bad shape of the elements in one diagonal direction 
which is the purpose of the test. 
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Since the angular definition of plate is sufficient to distort the elements, all the 
tested meshes are refinement of the following regular meshes attached below. 

 

 

 

90º mesh 60º mesh 30º mesh 

Figure 13, skew distorted meshes 

The refinements consist in 4x4, 8x8 and 14x14 element regular meshes for the 
quadrilateral thick element and the division following the diagonal direction for 
the triangular thin element.  

The kinematic type analysis was set to Small Displacements, since it is the 
case. However, if the Large-displacement theory is to be used, the results 
would be unchanged in all cases since the strains and rotations remain small.  

Results 

The analytical solution based on L.S.D. Morley, 1963 [18], varies with the angle 
of the plate, so each case can only be compared through the relative errors. 
The reference value of comparison has been set to the vertical displacement of 
the center point in the plate, as in the previous test. 

The following figure shows a similar distribution of the displacements with 
different top values at the center of the plate, which coincides with the analytical 
solution. 

  
 

90º mesh 60º mesh 30º mesh 

Figure 14, deflection chart for the 3 skew meshes 
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The following tables show the results of the Kratos and again Abaqus elements, 
since Abaqus was one of the best performers in the skew sensitivity test 
comparing with other commercial codes results listed in J. Robinson publication 
aforementioned. 

. 
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The next plots show the evolution of the relative error versus the dof: 

TRIANGULAR THIN ELEMENT (figure 15) 

90º mesh 60º mesh 30º mesh 
 

RECTANGULAR THICK ELEMENT (figure 16) 

   

90º mesh 60º mesh 30º mesh 
 

The Kratos numerical solution converges to the reference one, even though we 
can see a change of sign in the relative error for 2 of the implemented cases 

For this test, we can observe an excellent performance of the triangular thin 
Kratos element, much better than the element implemented in Abaqus, although 
for de 30º mesh the larger is the angular distortion; the lesser is the difference 
among elements. On the other hand, the quadrilateral thick element has a 
similar performance for 90º and 60º distortions and slightly worst for the 30º 
distortion. 

On the light of the results we can conclude that the element is sensible to skew 
geometry but the loss of accuracy for this phenomenon, even larger than other 
elements is acceptable. 
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4.4. TWISTED BEAM 

This problem examines the accuracy of the shell element for large deformations 
and inextensional bending for warped structures. The warping of the structure 
turns the bending to mainly torque phenomenon, but other stresses arise. 
Furthermore, the same cantilever shell beam is subjected to 2 different load 
cases leading to in-plane or out-of-plane shear. So, this is a quite complete 
benchmark, for large deformation analysis. 

The test was first proposed by MacNeal and Harder (1985) [20], who also 
provided the analytical solution for the thick twisted beam. The thin twisted 
beam solution was provided by Simo et al. (1989) [16].  

Problem description 

The structure is a cantilever beam twisted 90º about the main center axis which 
was defined coincident with the x axis. The rotation of the section is constant 
and anticlockwise advancing from the vertical clamped edge coincident with z 
axis, to the horizontal free edge parallel to y axis. 

The dimensions of the 
beam are 12.0 in long, 1.1 
in wide and for the 
thickness, two cases were 
drown, 0.32 in for the thick 
case and 0.05 in for the 
thin one. 

On the tip of the cantilever, 
a point load of 1.0 lb is 
applied. Two different 
cases are studied. An in-
plane load (load in y 
direction) and an out-plane 
load (in z direction). 

 

Figure 17 geometry and material properties 

The material is steel with a Young's modulus of 29.0 Msi and a Poisson's ratio 
of 0.22.   

Since only quadrilateral thick element and triangular thin element are 
implemented in Kratos up to the date of this work, this benchmark contains 8 
different cases, combining the element, the thickness and the direction of the 
load on the free end. 
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A set of regular meshes was defined, being the coarsest one a 2 × 12 mesh for 
the quadrilateral element. This leads to a warp angle of 7.5° per element length. 
For the triangular element, the coarser mesh consist in a 1 x 6 quadrilateral 
mesh and each quadrilateral divided in 4 triangles by adding one point in the 
center. This way, both meshes has the same number of elements and there is 
no distortion caused by the orientation of the triangles. 

 

 

Quadrilateral 2x12 elements  
 

Triangular [4 Triangles Block]x1x6  

Figure 18 coarser meshes tested (both 24 elements). 

 

Three refinements of the meshes were used in order to analyze convergence, 
consisting in 4x24, 8x48 and 16x96 quadrilateral meshes and [4 Triangles 
Block]x2x12, [4TB]x4x24 and [4TB]x8x48. 

In order to implement the coarser triangular mesh, the 1.0 lb point load on the 
tip, was transformed to 2 point loads of 0.5 lb on the free corners, recovering 
the tip load for all refined meshes. 

The same mesh discretization strategy was used for in-plane, out-plane, 0.32 
and 0.05 thickness.  
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Results 

As advanced, torque is the main bending effect, but the distribution varies 
strongly if in-plane of out-plane load is applied. While for the in plane (Fy) load, 
the shell momentum is stronger in the clamed section, for the out-plane case 
(Fz) it is stronger in the center of the beam. Exactly the opposite applies to the 
Sxx force, which is the other main stress.    

  

Figure 19 Sxx moment for Fy and Fz loads 

However, the magnitude of comparison with the reference solution and Abaqus 
element is the y tip displacement for the case of the Fy load, and the z tip 
displacement for the case of the Fz one. 

 

 

Figure 20 Deformed state (enhanced 
scale) for thick and Fy on the left and 
thin and Fz on the right.  

The following tables contain the results for the proposed problem for the two 
elements implemented in Kratos and the equivalent elements in the reference 
software (Abaqus). All the results for the 0.32 versions of the problem are 
multiplied for 10-3.  
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t=0.32, Fy t=0.05, Fy t=0.32, Fz t=0.05, Fz 
Figure 21 Relative error versus n elements comparison for quadrilateral mesh 

 

FY case mesh

S4 
Abaqus

Quadrilat
eral thick 

Kratos
S4 

Abaqus

Quadrilat
eral thick 

Kratos
Thickness 2x12 5.440 5.3942 0.29% -0.55%

0.32 4x24 5.428 5.4104 0.07% -0.25%
An.solution (*e-3) 8x48 5.427 5.4157 0.06% -0.15%

5.424 16x96 5.4176 -0.12%

Thickness 2x12 1.391 1.3831 0.07% -0.50%
0.05 4x24 1.388 1.3862 -0.14% -0.27%

An.solution 8x48 1.388 1.3870 -0.14% -0.22%
1.39 16x96 1.3873 -0.19%

FZ case mesh

S4 
Abaqus

Quadrilat
eral thick 

Kratos
S4 

Abaqus

Quadrilat
eral thick 

Kratos
Thickness 2x12 1.730 1.7213 -1.37% -1.86%

0.32 4x24 1.747 1.7438 -0.40% -0.58%
An.solution (*e-3) 8x48 1.753 1.7510 -0.06% -0.17%

1.754 16x96 1.7531 -0.05%

Thickness 2x12 0.325 0.3436 -5.25% 0.13%
0.05 4x24 0.338 0.3430 -1.46% -0.03%

An.solution 8x48 0.342 0.3430 -0.41% -0.03%
0.3431 16x96 0.3430 -0.03%

QUADRILATERAL THICK ELEMENTS

Uy displacement (in)
Error (vs Analytical 

Solution)

Uy displacement (in)
Error (vs Analytical 

Solution)
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t=0.32, Fy t=0.05, Fy t=0.32, Fz t=0.05, Fz 
Figure 22 Relative error versus n elements comparison for triangular mesh 

 

FY case mesh

S3R 
Abaqus

Triangular 
thin 

Kratos
S3R 

Abaqus

Triangula
r thin 

Kratos
Thickness [4TB]x1x6 5.262 5.2862 -2.99% -2.54%

0.32 [4TB]x2x12 5.361 5.3791 -1.16% -0.83%
An.solution (*e-3) [4TB]x4x24 5.405 5.3953 -0.35% -0.53%

5.424 [4TB]x8x48 5.3984 -0.47%

Thickness [4TB]x1x6 1.352 0.8839 -2.73% -36.41%
0.05 [4TB]x2x12 1.372 1.3139 -1.29% -5.47%

An.solution [4TB]x4x24 1.383 1.3809 -0.50% -0.65%
1.39 [4TB]x8x48 1.3865 -0.25%

FZ case mesh

S3R 
Abaqus

Triangular 
thin 

Kratos
S3R 

Abaqus

Triangula
r thin 

Kratos
Thickness [4TB]x1x6 1.400 1.5822 -20.18% -9.79%

0.32 [4TB]x2x12 1.581 1.6951 -9.86% -3.36%
An.solution (*e-3) [4TB]x4x24 1.696 1.7346 -3.31% -1.11%

1.754 [4TB]x8x48 1.7463 -0.44%

Thickness [4TB]x1x6 0.325 0.2276 -5.25% -33.66%
0.05 [4TB]x2x12 0.338 0.3311 -1.46% -3.51%

An.solution [4TB]x4x24 0.342 0.3422 -0.41% -0.25%
0.3431 [4TB]x8x48 0.3429 -0.05%

Uy displacement (in)
Error (vs Analytical 

Solution)

TRIANGULAR THIN ELEMENTS

Uy displacement (in) Error (vs Analytical 
Solution)
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The quadrilateral Reissner-Midlin performed well for the 4 cases tested, being 
the thick out-plane case the only one with a relative error over the 1% for the 
coarser mesh. Compared with the reference element, the results are slightly 
worst, but the out of plane thin problem, where Kratos element achieved an 
extraordinary accuracy. 

On the other hand, the triangular Timoshenko element had a poor performance 
for all the coarser meshes, especially for both cases with a thickness of 0.05 in, 
with relative errors larger than 30%. However, the error drops drastically by 
refining the mesh, and at 3rd refinement, all the results have less than a 1% 
relative error, but the thick out of plane case where it is 1.11%.  

To find the cause of this different behavior among the triangular and the 
quadrilateral elements we must look to distribution of the secondary effects 
generated for twisted beams. 

For the triangular mesh, the shear stresses results jump from element to 
element. For a shared edge, one element takes a positive value and the 
adjacent one a negative one. Both extremes compensate the system but this is 
not physical, and the deformation introduced in each element is the source of 
the error.    

 

4TB triangular mesh. 

 

Diagonal triangular mesh. 

Figure 23 Zoom of the Syy force distribution for Fz case 

 

Testing another triangular mesh consisting in dividing the quadrilaterals by 1 
diagonal, rather than splitting it in 4 triangles adding one point in the center, this 
effect is reduced but not suppressed. Consequently the results improve but still 
need 2 refinements to achieve less than 1% relative error. 

The CR formulation is specifically sensitive to this effect, since as stated in the 
theory,  displacements  and  rotations may be arbitrarily large, but  deformations  
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must be small. A discontinuous distribution of the stresses enhances the 
deformation of one element and the opposite deformation in the adjacent one. 
On the contrary, a uniform distribution, allows enhance the displacement and 
rotation of the element over the deformation. 

Even with this problem, after 2 refinements of the mesh the obtained accuracy 
is acceptable, and on the order of the referent elements. The accuracy is 
slightly worse for the in-plane load, but better in the out of plane loading, were 
Kratos elements capture faster the in-plane bending at the built-end.  

The next figures show the convergence for the 4 cases and both elements 

 

Figure 24 convergence analysis (abs relative error vs. n elements log scale) 

 

It can be seen that although the results in the triangular case had a worst start, 
the slope of convergence is larger, and for 1536 elements the order of 
magnitude is the same. We can also see that the slope turns almost horizontal 
for the quadrilateral element, which is not a good behavior, since an early peak 
of accuracy is reached, not allowing more precise calculations. 
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4.5. PINCHED CYLINDER 

The pinched cylinder with a diaphragm is one of the most severe tests for both 
inextensional bending modes and complex membrane states. It is specially 
demanding for shell elements, and as a consequence, most of the Mindlin 
elements, accounting for shear deformation do not converge efficiently in this 
problem, except for Kirchhoff formulations.  

As stated in [21] T. Belytschko 1985, an element that passes this test will also 
perform well if the boundary conditions are simplified to free ends. It is therefore 
sufficient to present only the cylinder with diaphragms. 

Furthermore, this example is especially useful because comparison can be 
made with known solutions (see [22] G.Lindberg et al., 1969). 

Problem description 

The benchmark consists in a cylinder with a rigid diaphragm in each circular 
base, subjected to two diametrically opposite point loads in the center. 

Exploiting the symmetry of the problem, only 1/8 of the cylinder is modeled with 
3 of the boundaries with symmetry B.C. and the in the forth one (the end of the 
cylinder), diaphragm B.C. Uy=Uz=Rx=0 are applied.  

Figure 25  

The following figure 
collects the geometry and 
material properties used 
for the test. The model is 
built in a self-consistent 
set of units, and because 
of this they are not written 
since any self-consistent 
set can be used. 

 

 

 

The thickness of the cylinder is 1/100 of its radius, so the structure can be 
considered a thin shell.  
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Three different quadrilateral and triangular meshes are used in the test, being 
the triangular ones just the division of the quadrilateral elements. The 2 
additional meshed have the purpose of checking the distortion sensitivity of the 
elements and are designed to fulfill the common needs of refine and improve 
accuracy to analyze local effects.  

The 1st  mesh is regular with an uniform distribution of 5x5 elements, which 
leads to 36 nodes and 216 degrees of freedom (dof from now on). 

In order to build the 2nd mesh, the starting point is the projection of the 1/8 of 
the cylinder into the XY plane. In the resulting rectangle, a smaller rectangle is 
created from the vertex of the projection of the applied load, taking 1/2 of the 
length in both edges. Then a diagonal edge is added to divide the “L” shaped 
polygon into two quadrilaterals. The 3 resulting quadrilaterals are projected 
back to the cylinder (in z direction) and an 8x8 element mesh is applied to the 
smaller surface, and a 4x8 mesh to the other 2 surfaces. This mesh has 894 
dof. 

The 3rd mesh has the same process but 1/5 of the length is taken for the edges 
of the smaller rectangle. 

   

Regular mesh, 216 dof Mesh 1, 894 dof Mesh 2, 894 dof 

Figure 26. Meshes for pinched cylinder test 

Some additional meshes have been tested, been just a refinement of the 3 
described above using twice the elements of the previous mesh. The results 
would refer to regular mesh, mesh 1 or mesh 2 and the dof in the mesh 
refinement.  

The kinematic type analysis was set to Small Displacements, since it is the 
case. However, if the Large-displacement theory is to be used, the results 
would be unchanged in all cases since the strains and rotations remain small.  
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Results 

The analytical solution based on Flügge's (1973) series solution and that can be 
checked in Lindberg et al., states that the radial displacement at the point where 
the pinching load is applied is equal to 0.1825 × 10–4. 

   

   

Regular mesh, 726 dof Mesh 1, 894 dof Mesh 2, 894 dof 

Figure 27 Z and Y displacement for quadrilateral thick element of Kratos solver. 

As shown in the figures and latter on the tables of results, distorting the mesh 
does not have a great impact in the result. For a roughly equal number of dof, 
we obtain slightly worse results as larger is the distortion, but the loss of 
accuracy is not significant. The same analysis can be applied to triangular thin 
elements, as shown below. 

   

Regular mesh, 726 dof Mesh 1, 894 dof Mesh 2, 894 dof 

Figure 28 Z and Y displacement for triangular thin element of Kratos solver. 
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The following tables show the results of the Kratos and Abaqus elements, in 
order to put into perspective the performance of the implemented elements. 

 

In this case, convergence towards the reference solution can be observed, but 
the 2646 elements regular mesh were the relative error changes of sign has 
almost the same error than the previous coarser mesh. 

Two additional refinements for the regular mesh were calculated in order to 
ensure that the element is really converging and does not keep increasing. As 
shown in the table, for the 2 refinements of the mesh, the relative error keeps 
reducing, so the numerical solution is converging towards the analytical one. At 
the end of the case a convergence plot is attached. 
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The next plots show the evolution of the relative error versus the dof: 

TRIANGULAR THIN ELEMENT (figure 29) 

   

Regular mesh Mesh 1 Mesh 2 

 

RECTANGULAR THICK ELEMENT (figure 30) 

   

Regular mesh Mesh 1 Mesh 2 

 

Comparing the results of the CR triangular thin element implemented in Kratos 
with an analog shell element, as is the case of S3R of Abaqus, shows that the 
results have much greater accuracy. However, we can see that at the test with 
regular mesh and 2646 dof, the obtained value exceeded the analytical solution, 
even the previous results were not. 

On the other hand, analyzing the results of quadrilateral thick elements tested, 
similar accuracy can be observed, even slightly worst for the thick CR element 
than for the S4 element implemented in Abaqus. 
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The next figure contains the convergence analysis of the triangular thin element 
and regular mesh. An irregularity of the slope arises because the non absolute 
relative error changes the sign after second refinement, but even then the 
solution keeps converging. The slope of convergence is larger the coarser is the 
mesh, and then it stabilizes at an almost constant slope. 

 

Figure 31, convergence analysis (abs of relative error vs. dof, log scale) 
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4.6. SCORDELIS-LO ROOF (THE BARREL VAULT ROOF 
PROBLEM) 

The pinched last linear test performed is the Sordelis-Lo Roof problem. It is also 
a demanding test for both inextensional bending modes and complex 
membrane states. As example on the early publications there is not agreement 
about the converging reference solution. 

The first mention to the problem was by A. C. Scordelis and K. S. Lo. 1964 [23], 
but several publications argue about the method and the material properties 
used. Among the publications are D. G. Ashwell,  R. H. Gallagher, 
Editors, 1976. [24], T. J. R.Hughes, R. L. Taylor, and W. Kanoknukulchai, 1977. 
[25] , R.H. MacNeal, R. L. Harder. 1985. [20]  or T. Belytschko.  1986. [26] 

Main discussion is that Scordelis work was based on the work of Gibson , in 
which the shell geometry is shallow, however the load components were 
calculated as if the shell was deep. However, discussion on the Poisson’s  ratio 
and Young Modulus can be found. 

The present work uses the standardization used in the last decade of 20th 
century discarding the value of 0.3086 length units as the mid side vertical 
displacement. The reference values stated in all recent publications are 0.0 
Poisson’s ratio, 4.32e8 Young Modulus and 0.3024 as solution. 

Problem description 

In this example, a single span, 
cylindrical barrel vault roof is analyzed 
for gravity loads. The deeply arched roof 
is supported only by diaphragms 
(Ux=Uy=Rz=0 B.C.) at its curved edges, 
leaving the straight edges free. 

The curvature of the roof is a radius of 
25, forming a 40º towards both sides of 
the XZ plane which contains the line 
with the upper points of the roof. The 
roof spans longitudinally 50 unit length 
between supports, and its thickness is 
0.25 units. 

 

 

Figure 32 graphical description for 
Scordelis-Lo roof problem 
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The symmetry of the problem allows us to model only 1/4 of the roof applying 
symmetry B.C. to intersections with XY and XZ planes as seen in the figure.  

As advanced in the introduction, material properties modeled are 0.0 Poisson’s 
ratio, 4.32e8 Young Modulus, in agreement with latest normalization of the 
problem. 

Three different meshes are used in the test. The quadrilateral one is a regular 
distribution of elements and the 2 triangular ones are the division of this 
quadrilateral mesh following both diagonals.  

   

Quadrilateral mesh Triangular mesh A Triangular mesh B 

Figure 33. Meshes for Scordelis-Lo roof 

The coarser mesh consist in a 2x2 mesh, and refinement generally consist in 
doubling the number of elements per side, however, in order to compare with all 
the reference element, a 6x6 and a 10x10 mesh were used for quadrilaterals, 
while only a 20x20 extra mesh was tested for the triangular cases. The 20x20 
mesh Is the finer one tested for all the cases. 

As all the previous linear cases (but the quasi-static one) the kinematic type 
analysis was set to Small Displacements.  

 

Results 

The result of the barrel vault problem is not a straight forward one. As 
consequence of the of the complex stress state, the gravity load makes the 
central part of the roof to lift slightly while the free edge and all lower part of the 
roof drops as expected.  

The reference magnitude is the deflection of the central point of the free edge, 
and the referent solution is 0.3024 as almost all the recent publications. 

Even the coarser meshes are capable of capturing the general behavior, 
although they do it with considerable error. As example the next figure show the 
final deformation state for all 4x4 meshes. 
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Quadrilateral mesh Triangular mesh A Triangular mesh B 

Figure 34. Numerical results for Kratos coarse meshes 

 

The following tables contain the results of the Kratos and Xfinas elements, in 
order to put into perspective the performance of the implemented elements. 

 

0.3024

mesh Xshell41
Triangular 
thin Kratos Xshell41

Triangular 
thin Kratos

2x2 0.3954 30.74%
4x4 0.312 0.3068 3.30% 1.47%
6x6 0.305 0.3019 0.80% -0.15%
8x8 0.303 0.3011 0.10% -0.42%

10x10 0.302 0.3009 -0.10% -0.49%
16x16 0.3009 -0.51%
32x32 0.3010 -0.46%
64X64 0.3012 -0.39%

128X128 0.3014 -0.34%

Xshell31
Triangular 
thin Kratos Xshell31

Triangular 
thin Kratos

2x2 0.300 0.3439 -0.80% 13.73%
4x4 0.277 0.3019 -8.30% -0.15%
8x8 0.292 0.3003 -3.30% -0.71%

16x16 0.299 0.3004 -1.10% -0.66%
20x20 0.298 0.3005 -1.40% -0.64%

2x2 0.298 0.4640 -1.40% 53.43%
4x4 0.275 0.3285 -8.90% 8.63%
8x8 0.292 0.3069 -3.60% 1.48%

16x16 0.298 0.3021 -1.50% -0.10%
20x20 0.299 0.3015 -1.20% -0.29%T
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The next plots show the evolution of the relative error versus the elements in 
one direction. 

   

Quadrilateral mesh Triangular mesh A Triangular mesh B 
Figure 35. Relative error for all Kratos elements 

 

Regarding the Kratos results, it can be observed a common behavior of the 
elements with all the previous cases. It consist in a really fast starting 
convergence curve to the reference solution, then the error value of the 
numerical solutions surpasses the reference one (changes sign), and after 
reaching a local maximum for the relative error on the opposite sign of the initial 
one, another much slower convergence curve starts. 

Comparing the results of the CR triangular thin element implemented in Kratos 
with an analog 3 points elements of Xfinas, and neglecting the 2x2 mesh were 
Xfinas is obtaining a lucky initial value, leads to realization Kratos results show 
greater accuracy.  

On the other hand, analyzing the results of quadrilateral thick elements tested, it 
can observed a faster convergence until the solution surpasses the reference 
value, but then several refined meshes obtain results close to 0,5% relative 
error until the reverse convergence curve starts. 

It must be said that the quadrilateral Kratos element is a Reissner-Midlin 
formulation, but the thickness/span ratio is 1/100 so a Kirchhoff element would 
perform better.  
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The following convergence analysis shows neatly the two steps convergence 
displayed for the elements in various cases. In this case the maximum after the 
change of sign of the relative error is extraordinarily high and the second 
convergence step is specially slow, so was the case were more refinements 
were performed in order to ensure the convergence of the elements. 

 

 

Figure 36, convergence analysis (abs of relative error vs. n elements, log scale) 
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5. NON LINEAR STATIC ANALYSIS OF 
ISOTROPIC SHELL ELEMENT 

5.1. ELASTIC LARGE DEFLECTION RESPONSE OF A Z-
SHAPED CANTILEVER UNDER AN END LOAD 

This is a test recommended by the National Agency for Finite Element Methods 
and Standards (U.K.): Test 3DNLG-1 from NAFEMS Publication R0024 [27]. 
Since the published results of this NAFEMS were made with Abaqus software 
this is the verification result versus which the Kratos results were compared. 

In this non-linear test, the incremental end load makes bend the cantilever in an 
inversely exponential rate, and the magnitude of interest is the tip deflection 
produced in the end edge and its evolution in time.   

Problem description 

The benchmark consist in a z-shaped cantilever with 3 horizontal plates of 
60x20mm separated by 30mm in vertical and 60mm in horizontal, and a central 
sloping plate, of 60x20mm in plan that joins the former plates. The material 
characteristics of the plate are Young's modulus 2.05e5 MPa and Poisson's 
ratio 0.3.  

Non-linear, large displacements and quasi static analysis is stated in the type of 
calculation. The cantilever is clamped in one edge, and in the other a total end 
load of 4000 N is applied in 100 equal time intervals. An uniform pressure  of 
1.0 × 10–6 is applied over the entire surface.  

Figure 37 

The following figure 
displays the geometry of 
the benchmark. 

Since 1 element width 
meshes were used, single 
loads were applied on the 
free edge. 
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A regular mesh of 1 
element in the short 
direction and 72 elements 
in the long  one is defined. 
This results in 24 
elements of 2.5mm in plan 
view for plate forming the 
cantilever.  

Figure 38 

The next figure shows the 
aforementioned mesh  

 

In the NAFEMS publication the triangular element is not tested, but since in 
Kratos the reduced integration is only implemented for the triangular element, 
the current work includes a mesh consisting in the splitting of the rectangles by 
the diagonal. 

  

Results 

Figure 39 

The following figure shows the final step for 
the z deformation of the cantilever. 

The scale of the deformation is x1 and we 
can observe the large deformation of the 
proposed benchmark. 

In order to check the convergence of the 
element to this test, and also to verify the 
results of the reference solution, two 
refinements of the mesh were 
implemented, and 2 coarser mesh were 
also tested. Since the results are very 
close, only the divergence analysis of the 
tip deflection will be displayed.  
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Apart from the final deformational step, also the evolution in time is of interest in 
a quasistatic nonlinear analysis. 

 

 

 

 

Kratos numerical solution Reference numerical solution NAFEMS 

Figure 40 Maximum deflection for 100 time steps in the case of Kratos and the 
reference solution from the NAFEMS publications. 

The numerical comparison with the NAFEMS reference is attached below. For 
the quadrilateral thick Kratos elements, a 8000 steps calculation was 
performed. On the other hand, since there is no triangular element reference,  
the triangular results for applied load 104.5 and 1263 were interpolated from a 
100 time step calculation. 
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The obtained results have less than a 2% of difference respect the reference 
solution. However, the reference solution is not an analytical one. 

The obtained solution defends also on the time discretization, and for the 
purposes of the current benchmark, a 100 steps time discretization is enough to 
check the convergence, especially when the results differ in less than a 1% 
from the 8000 time steps needed to compare with the NAFEMS solution. 

Hence, in order to perform the convergence analysis, the solution for a 1x300 
Kratos elements mesh and 100 steps in time was set as the reference solution. 
The 1x18, 1x36, 1x72, 1x150 I 1x300 where the meshes computed with results 
of 142.68, 123.92, 142.99, 143.02 and 143.02 respectively. 

 

Figure 41, convergence analysis (abs of relative error vs. n dof, log scale) for 
the quadrilateral thick element. 
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5.2. LARGE ELASTIC DEFLECTION OF A PINCHED 
HEMISPHERICAL SHELL 

This test also belongs to the NAFEMS Publication R0024 [27] Its reference 
number is test 3DNLG-9. 

This non-linear test consists in as hemispherical shell with a circular hole at its 
pole, which is loaded with two compressive and two tensile forces applied in 
alternating mode every 90 degrees along the lower free boundary of the shell.  

The hemispherical shape leads to an increasing resistance to deformation that 
is responsible of the non-linear behavior.  

Problem description 

The radius of the hemispherical shell is 10 m, its thickness is 0.040 m and the 
upper hole forms an angle of 18º between the z axis and any line joining the 
limit of the hole with the center of the hemisphere.  

Taking advantage of the symmetry of the problem, only 1/4 of the hemisphere is 
modeled, with the 2 lateral the boundaries with symmetry B.C. and the other 2 
(upper and lower) free, as stated by the problem description.  

 

Figure 42 

The following figure 
shows the geometry 
and material properties 
used for the test. The 
model is built in a self-
consistent set of units. 
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The thickness of the cylinder is lower than 1/100 of its radius, so the structure 
can be considered a thin shell. 

The accessible reference solution does not refer to any mesh distribution, so 
different regular meshes were tested with the double purpose of check the 
convergence and compare the results with the reference result. 5x5, 10x10, 
20x20 and 40x40 quadrilateral meshes were calculated and the corresponding 
triangular meshes obtained by splitting the previous elements through one 
diagonal. 

  

Quadrilateral mesh Triangular mesh 

Figure 43. Sample of the meshes used 
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Results 

The following figures show the last step of the incremental deformation for a 
quadrilateral 20x20 mesh.   

 

 

Axisymmetric view Top view 

Figure 44. Deformed final state 

 

A part from the final deformation step, the non-linear evolution is also of 
interest. The points fixed to check the evolution in time are the 2 points of the 
base of the hemispherical section coinciding with the x and y axis, which have 
opposite elongation / contraction sign. 
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Kratos numerical solution Reference numerical solution 
NAFEMS 

Figure 45 Radial displacement evolution Kratos and reference solution from the 
NAFEMS publications. 

The next tables show the results for the radial displacement considering the 
different elements, meshes, the reference solution and the difference respect 
the latter. 

 

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S4 Abaqus ) -3.21 2.30
Quadrilateral thick Kratos 5x5 -0.99 0.87 -69.16% -62.39%
Quadrilateral thick Kratos 10x10 -2.81 2.07 -12.45% -9.98%
Quadrilateral thick Kratos 20x20 -3.19 2.29 -0.70% -0.22%
Quadrilateral thick Kratos 30x30 -3.22 2.31 0.26% 0.52%

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S4 Abaqus ) -4.34 2.82
Quadrilateral thick Kratos 5x5 -1.45 1.19 -66.67% -57.87%
Quadrilateral thick Kratos 10x10 -3.76 2.53 -13.41% -10.29%
Quadrilateral thick Kratos 20x20 -4.24 2.81 -2.22% -0.42%
Quadrilateral thick Kratos 30x30 -4.28 2.81 -1.30% -0.43%

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S4 Abaqus ) -5.80 3.41
Quadrilateral thick Kratos 5x5 -2.22 1.65 -61.79% -51.68%
Quadrilateral thick Kratos 10x10 -5.06 3.04 -12.75% -10.80%
Quadrilateral thick Kratos 20x20 -5.77 3.37 -0.47% -1.23%
Quadrilateral thick Kratos 30x30 -5.83 3.39 0.56% -0.46%

RESULTS FOR QUADRILATERAL THICK ELEMENT
APPLIED LOAD (40)

APPLIED LOAD (60)

APPLIED LOAD (100)
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The first thing to notice is that for this test, the difference of performance and 
difference respect the reference is similar for the triangular and the quadrilateral 
case, which was not the case for the linear tests. 

In both cases, the lesser load applied, the larger is the difference between the 
reference solution and the one computed with Abaqus. This means that the 
Kratos curve is slightly smoother than the one resulting from the reference 
element. 

For both elements the solution gets close to the reference one in few 
refinements of the mesh. However, the reference solution is not analytical, and 
it can be not adopted as reference for a proper convergence analysis. 

 

 

 

 

  

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S3R Abaqus ) -3.12 2.27
Quadrilateral thick Kratos 5x5 -0.51 0.48 -83.68% -78.72%
Quadrilateral thick Kratos 10x10 -2.52 1.91 -19.17% -15.73%
Quadrilateral thick Kratos 20x20 -3.19 2.29 2.32% 0.71%
Quadrilateral thick Kratos 30x30 -3.23 2.31 3.51% 1.83%

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S3R Abaqus ) -4.15 2.76
Quadrilateral thick Kratos 5x5 -0.79 0.73 -80.94% -73.67%
Quadrilateral thick Kratos 10x10 -3.59 2.47 -13.41% -10.65%
Quadrilateral thick Kratos 20x20 -4.27 2.79 2.87% 1.00%
Quadrilateral thick Kratos 30x30 -4.30 2.81 3.67% 1.80%

Ux (A) Uy (B) diff (Ux A) diff (Ux B)
NAFEMS (S3R Abaqus ) -5.67 3.34
Quadrilateral thick Kratos 5x5 -1.41 1.20 -75.19% -63.95%
Quadrilateral thick Kratos 10x10 -5.22 3.13 -7.86% -6.42%
Quadrilateral thick Kratos 20x20 -5.83 3.38 2.88% 1.17%
Quadrilateral thick Kratos 30x30 -5.86 3.40 3.38% 1.74%

APPLIED LOAD (100)

RESULTS FOR TRIANGULAR THIN ELEMENT
APPLIED LOAD (40)

APPLIED LOAD (60)
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Figure 46 convergence analysis (abs of relative error vs. n elements log scale) 

 

The convergence analysis was done taking the 30x30 mesh solution as the 
reference one in order to compute the relative error. 

The slope of convergence is almost identical for both elements implemented. 
So taking into account all the results and comparison with the reference 
solution, it can be seen said that both elements performed correctly for this 
benchmark.  
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5.3. HINGED SPHERICAL SHEL WITH CONCENTRATED LOAD  

This test was first mentioned by G. Dhatt. 1970 [28]. It is one of the simpler 
benchmark in order to check the correctness of an element in a post-buckling 
scenario. Also, the Xfinas validation manual was used, as a source of reference 
results, since no analytical solution is known for the problem.   

The fact of being a concentrated load, allows us to enforce a nodal 
displacement rather than a load, and capture the entire equilibrium path without 
needing any line search algorithm, which at the moment of the writing of this 
work was not fully integrated with the shell routines. 

Problem description 

The problem consists in a curved plate simply supported on all its edges, and a 
punctual load is applied on the center. The curve is generated by cutting a 
sphere with a quadrilateral prism. The radius of the sphere is 2540mm, and the 
edges of the quadrilateral prism (and thus, the plan dimensions of the plate) 
2*784.9mm=1569.9mm.  

The thickness of the plate is 99.45mm so the thickness is over 1/10 the span of 
the Plate. That would lead to out of plane shear stress and transverse shear 
deformation cannot be neglected.  

Since the problem is 
symmetric only 1/4 of the 
plate was modeled, with 2 
edges simply supported 
B.C. and the other 2 with 
symmetry B.C. 

Figure 47 

The following figure shows 
the geometry and material 
properties used for the 
test.  

 

 

The material properties of the plate are set to young modulus 68.95kN/mm² and 
Poisson ratio = 0.3. 
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As advanced, instead of applying a nodal force in the center of the plate, an 
imposed displacement of 300mm was stated. This allows us to capture the 
same force/displacement relation without needing a line search algorithm in the 
post-buckling area.  

The kinematic type analysis was set to Large Displacements, and a quasi-static 
analysis consisting in a 100 time steps incremental strategy for the imposed 
deformation was used in order to capture the nonlinearity of the problem. 

Both quadrilateral and triangular 
meshes are regular ones, being 8x8 
elements the reference results 
available for comparison. However, 
4x4, 16x16 and 32x32 meshes were 
used to check the convergence, in 
both  cases, and an additional 64x64 
mesh in the case of the thick 
quadrilateral element. 

 

 Figure 43. Triangular mesh used 

Results 

Since we have imposed the displacement, the magnitude of interest is the shell 
z reaction in the center of the plate. 

  

Figure 48. Deformed final state 1x 
scale. 

Figure 49. Z shell reaction 

 

The reaction on the center of the plate for an imposed displacement is equal to 
the force needed in the center to generate the same displacement. We can 
observe in the reaction figure the concentration on the center. This value 
corresponds to 1/4 of the plate so adding the other 3 parts contribution is 
required for checking the value.  
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The quadrilateral thick element is 
using a Mindlin/Reisser formulation, 
and consequently we get results for 
the out of plane shear stress that will 
contribute to the deformation. On the 
other side, the Triangular thin 
element uses a Kirchhoff formulation 
and neglecting this effect leads to a 
different wrong result.   

 Figure 50 Out of plane shear 

 

The magnitude of interest is the equilibrium path between the Load – 
Displacement at the center, especially the post-buckling part. The following plot 
shows the equilibrium path for both Kratos elements and for the Xfinas, Dhatt 
(1970) and Horrigmore & Bergan (1978).  

Kratos numerical solution Reference solutions 

Figure 51 Displacement / Center Load evolution for an 8x8 mesh 

Comparison of both figures shows that the quadrilateral thick Kratos element 
leads to a curve that is almost identical to the one resulting for both XSHELL 
elements. On the contrary, the triangular thin Kratos has a significant difference 
and leads to a similar result than the Horringmore & Bergan (1978) one. 
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As a previous step to check the convergence of both elements, a comparison of 
the results for the different meshes was done. The following table shows the 
results for applied displacements of 150, 240 and 300 mm. 

 

 

It is remarkable that triangular thin element converges fast; on the contrary, 
quadrilateral thick element keeps decreasing the values as we refine the mesh. 
Even though it is converging, it does so at a very slow speed. 

Since the convergence is really 
slow, a least square comparison 
of the difference between each 
mesh and its previous one was 
performed, and this value is also 
included in the table. The least 
square values confirm that the 
convergence is on the entire 
equilibrium path.  

The results of this convergence 
analysis is attached on the right  

Figure 52 Convergence analysis. (Least squares difference with previous mesh 
vs. n elements, log scale) 

The lack of speed of convergence could be due to the fact that the imposed 
displacement, resembling the punctual load, generates a reaction and 
transverse shear effects whose influence depends on the size of the element. 

150.00 240.00 300.00
Quadrilateral thick Kratos 4x4 -50.78 -36.53 -54.90
Quadrilateral thick Kratos 8x8 -48.61 -35.97 -53.61 333.47
Quadrilateral thick Kratos 16x16 -48.01 -35.69 -51.83 62.29
Quadrilateral thick Kratos 32x32 -47.81 -35.72 -50.29 28.36
Quadrilateral thick Kratos 64x64 -47.72 -35.88 -49.09 17.90

LEAST SQUARES 
DIFFERENCE WITH 
PREVIOUS MESH

RESULTS FOR Z REACTION
APPLIED DISPLACEMENT

Triangular thin Kratos 4x4 -49.67 -36.23 -63.01
Triangular thin Kratos 8x8 -49.71 -36.59 -62.49 27.64
Triangular thin Kratos 16x16 -49.70 -36.83 -62.52 2.69
Triangular thin Kratos 32x32 -49.69 -36.89 -62.54 0.18

PREVIOUS MESH
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Extension to uniform pressure 

Even though the lack of line search does not allow us to make a complete full 
analysis, it is possible to analyze the convergence of the first limit point and a 
final load/displacement point after the snap through buckling for an equivalent 
problem subjected to uniform pressure. This analysis is performed in order to 
check the point that the slow convergence is caused by the dependence of the 
punctual loads/imposed displacements on the element size. 

Figure 53 

The following figure shows the 
geometry and material properties for 
the equivalent problem. The plan 
length of the plate is 1570mm, 
thickness is 100mm, E=69kN/mm² 
and the curvature is defined by the 
formula  

z=2.0285e-4·(X·(X-L)+ Y(L-Y)) 

 
 

The results obtained are attached next. It must be taken into consideration that 
the value pre snap trough was set to the pressure step where all the meshes 
where stable, but with some meshes stability lasted 1 or 2 steps more, getting 
to deflections close to 80mm which are on the order of the results of Abaqus 
calculations with line search.  

 

 

It is then proved that the convergence problem was due to the punctual load 
and not to the elements implemented. 

Quadrilateral thick Kratos 4x4 -66.32 308.91
Quadrilateral thick Kratos 8x8 -68.53 306.12
Quadrilateral thick Kratos 16x16 -69.77 305.49
Quadrilateral thick Kratos 32x32 -70.25 305.36
Quadrilateral thick Kratos 64x64 -70.39 305.33

RESULTS
Z DEFLECT. 
PRESNAP 
THROUGH

Z DEFLECT. 
FOR 0.1 

PRESSURE

Triangular thin Kratos 4x4 -80.25 303.14
Triangular thin Kratos 8x8 -73.17 303.72
Triangular thin Kratos 16x16 -71.74 303.83
Triangular thin Kratos 32x32 -71.27 303.87
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6. CONCLUSION 

The validation of an element is crucial in the development of any finite element 
software in order to ensure the correctness of the program and the accuracy of 
the results the final user will obtain using it. It is a process that must be made at 
the same time than the software itself, in order to detect and fix the possible 
bugs or situation where the accuracy of the mathematical model is not optimal. 

The current work has focused in the validation of the elements through a first 
step considering linear analysis and a second one considering geometric non-
linearities. Also some tools needed to make a full validation analysis are not 
developed for the shell case, as the line search / arch length algorithms, so the 
future work should be implement these tools and complete the validation 
process with some material non-linear .benchmarks and some more tests with 
line search and complex equilibrium paths. 

It was found that for both element and most cases convergence for the relative 
error shows a 2 step curve, crossing the 0% error to get a local maximum 
before starting the second step with much lesser convergence slope.  

The results obtained for both elements analyzed for all the benchmarks tested 
have been in general satisfactory compared to the reference results. It is worth 
to make further analysis of some of the results obtained. 

For the cases of linear problems with simple stress states, both elements 
showed similar accuracy, and excellent performance with the only exception of 
the triangular element under warp distortion, which showed really poor initial 
results but better slope of convergence, getting similar accuracy after 2 
refinements. 

For the linear benchmarks with small displacements and complex stress states, 
the triangular thin element showed extraordinary accuracy, far better than the 
equivalent reference element. This is due to ANDES theory stated by C. A. 
Felippa. However, we have seen than even both elements obtained good 
results for the skew sensitivity test, the elements are more sensible to this 
distortion than the reference elements.  

Regarding the geometric non-linearity, triangular element performed slightly 
better, but in the cases in which transverse shear was relevant (it has a 
Kirchhoff setting, so it neglects this effect by formulation). Anyway, both 
elements succeeded in the non-linear benchmarks; and this was the primary 
objective of the present work.  
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